• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Synchronous Reactance and Synchronous Impedance

Edwiin
Edwiin
Field: Power switch
China

Synchronous Reactance and Impedance Principles

Synchronous reactance (Xₛ) is an imaginary reactance used to represent voltage effects in the armature circuit, arising from both the actual armature leakage reactance and air gap flux variations due to armature reaction. Similarly, synchronous impedance (Zₛ) is a fictitious impedance that accounts for voltage effects from the armature resistance, leakage reactance, and air gap flux changes caused by armature reaction.

The actual generated voltage comprises two components: the excitation voltage (Eₑₓₑc), which would be induced by field excitation alone in the absence of armature reaction, and the armature reaction voltage (Eₐₚ), which reflects the impact of armature reaction. These voltages are combined to quantify the effect of armature reaction on the generated voltage, expressed as:Ea = Eexc + EAR.

The voltage induced in the circuit due to flux changes from armature current is an inductive reactance effect. Thus, the armature reaction voltage (Eₐₚ) is equivalent to an inductive reactance voltage, expressed by the following equation:

The inductive reactance (Xₐₚ) is a fictitious reactance that generates a voltage in the armature circuit. Consequently, the armature reaction voltage can be modeled as an inductor connected in series with the internally generated voltage.

In addition to armature reaction effects, the stator winding exhibits self-inductance and resistance. Let:

  •  = self-inductance of the stator winding

  •  = self-inductive reactance of the stator winding

  •  = armature stator resistance

The terminal voltage  is expressed by the following equation:

Where:

 

  • Ra Ia = armature resistance voltage drop

  • Xa Ia = armature leakage reactance voltage drop

  • XAR Ia = armature reaction voltage

Both armature reaction and leakage flux effects manifest as inductive reactances in the machine. These combine to form a single equivalent reactance known as the machine's synchronous reactance XS.

The impedance ZS in Equation (7) is the synchronous impedance, where XS denotes the synchronous reactance.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.