• Arc-proof Air-insulated Switchgear for Primary Distribution  12kV 630...2000A 25kA
Arc-proof Air-insulated Switchgear for Primary Distribution 12kV 630...2000A 25kA
discuss personally
Model
LeanGear ZS9-12
Basic info
Brand ABB
Model NO. Arc-proof Air-insulated Switchgear for Primary Distribution 12kV 630...2000A 25kA
Rated voltage 12kV
Rated frequency 50/60Hz
Series LeanGear ZS9
Product Detail

Description:

LeanGear ZS9 is an arc-proof air-insulated switchgear designed to meet space requirements and ratings of low electrical distribution grids.

It offers optimal safety and reliability standards, consistent with the ABB’s UniGear range of switchgear. With a proven robustness and flexibility,  the LeanGear ZS9 is tested for tropical conditions.

Main benefits:

  • Safety: Increased safety level assured by integrated ducting system against effects of internal arc.
  • Security: Comprehensive interlocks provide optimum protection for both personnel and equipment.
  • Space: Maximum functionality in a compact design with reduced footprint and height.
  • Service: Ease of service and operation by personnel as switchgear and cable termination height are ergonomically designed.
  • Speed: Minimal service downtime attributable to modular circuit breaker design and built-in features that eliminate use of special handling tools.
  •  Strength: Robust panel structure that is proven against external mechanical impacts.

Main features:

  • Type-tested to IEC standard by STL lab.
  • Internal arc classification IAC AFLR 25kA 1s.
  • Classified as LSC2B, PM.
  • Up to 1250A, proven for severe climatic conditions compliant to IEC 62271-304 Class 2.
  • CB racking with closed door.
  • Cable termination height of 700 mm.
  •  IP4X degree of protection.
  • Extensible on both sides.
  • Integrate with ABB Relion® series relay for protection and control.
  •  For Higher Altitude contact ABB.

VInd/L circuit breaker:

  • Floor-rolling circuit breaker.
  • Suitable for E2, M2, and C2 endurance class application.
  •  Integral spring charging handle.
  •  Built-in mechanical anti-pumping device.

Single line diagram of typical units:

Typical feeder unit:

 A: Circuit breaker compartment
 B: Busbar compartment
 C: Cable compartment
 D: Low voltage compartment
 E: Integral panel gas duct

Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High voltage/Low voltage
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
Documents
Public.
LeanGear ZS9 Arc-proof Air-insulated Switchgear for Primary Distribution
Manual English
PDF
FAQ
Q: What support and services does ABB provide for installation, commissioning, and after-sales maintenance?
A:
ABB provides comprehensive support services including installation, commissioning, and after-sales maintenance. Our team of experts ensures smooth deployment and ongoing support to maximize the performance and longevity of our switchgear products.
Q: What smart solutions are available for ABB’s AIS portfolio?
A:
ABB’s switchgear smart solutions are designed to help our customers make data-driven decisions. Our customers can benefit from a wide range monitoring, diagnostic, automation and control features for their ABB’s air-insulated medium voltage switchgear. Contact our sales team to learn more about ABB’s smart solutions for each of our switchgear.
Related Products
Related Knowledges
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
Low-voltage current transformers, as indispensable measurement and protection devices in power systems, often encounter various faults when used in combination with other power equipment due to environmental factors, equipment linkage issues, and improper installation and maintenance. These faults not only affect the normal operation of power equipment but may also endanger personal safety. Therefore, it is necessary to gain an in-depth understanding of fault types, judgment methods, and prevent
Felix Spark
07/17/2025
What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!