Generator Synchronization

05/26/2025

A stationary generator must never be connected to live busbars, as the induced electromotive force (EMF) is zero at standstill, which would cause a short circuit. The synchronization procedure and the equipment used for checking it are identical whether one alternator is to be connected in parallel with another alternator or an alternator is to be connected to an infinite bus.

Synchronisation via Synchronising Lamps

A set of three synchronizing lamps can be employed to verify the conditions for paralleling or synchronizing an incoming machine with another. The dark lamp method—used in conjunction with a voltmeter for synchronization—is illustrated below. This approach is suitable for low-power machines.

Synchronization Process Using Synchronizing Lamps
  • Prime Mover and Voltage Adjustment
    • Start the prime mover of the incoming machine and accelerate it to near its rated speed.
    • Adjust the field current of the incoming machine until its output voltage matches the bus voltage.
  • Frequency and Phase Detection
    • The three synchronizing lamps will flicker at a rate proportional to the frequency difference between the incoming machine and the bus.
    • Phase Sequence Check: If all lamps glow and dim simultaneously, the phase connections are correct. If not, the phase sequence is misaligned.
  • Corrective Actions and Switch Closure
    • To rectify phase sequence, interchange any two line leads of the incoming machine.
    • Fine-tune the incoming machine’s frequency until the lamps flicker at a rate of less than one dark period per second.
    • After final voltage adjustment, close the synchronizing switch at the midpoint of the dark period to minimize voltage discrepancy.

Advantages of the Dark Lamp Method

  • Cost-efficient compared to other synchronization techniques.
  • Enables straightforward verification of correct phase sequence.

Disadvantages of the Dark Lamp Method

  • Lamps appear dark at approximately 50% of their rated voltage, risking switch closure during residual phase differences.
  • Frequent voltage fluctuations may cause filament burnout.
  • Flicker behavior does not indicate whether the incoming frequency is higher or lower than the bus frequency.

Three Bright Lamp Method

  • Connection Scheme: Lamps are cross-connected across phases (e.g., A1-B2, B1-C2, C1-A2).
  • Synchronization Cue: If all lamps brighten and dim in unison, the phase sequence is correct.
  • Optimal Switching: Close the switch at the peak of the bright period.

Two Bright One Dark Lamp Method

  • Connection Configuration: One lamp is connected between corresponding phases (e.g., A1-A2), while the other two are cross-connected (e.g., B1-C2, C1-B2), as illustrated below.
  • Phase Indication: The correct phase sequence is confirmed when one lamp remains dark while the other two alternate between brightness and darkness.

Connection Configuration and Synchronization Steps
In this setup, A1 is connected to A2, B1 to C2, and C1 to B2. The prime mover of the incoming machine is started and accelerated to its rated speed. The excitation of the incoming machine is adjusted such that the induced voltages EA1, EB2, EC3 match the busbar voltages VA1, VB1, VC1. The corresponding diagram is illustrated below.
Optimal Switch Closure and Phase Sequence Verification
The ideal moment to close the synchronizing switch occurs when the directly connected lamp (A1-A2) is fully dark while the cross-connected lamps (B1-C2, C1-B2) are equally bright. If the phase sequence is incorrect, this condition will not be met, and all lamps will either remain dark or flicker out of sync.
To correct the phase sequence, swap any two line connections of the incoming machine. Since the dark range of incandescent lamps spans a significant voltage interval (typically 40-60% of rated voltage), a voltmeter (V1) is connected across the directly connected lamp. The switch should be closed when the voltmeter reads zero, indicating minimal voltage difference between the incoming machine and the busbar.
Operational Modes and Automation
Once synchronized, the incoming machine "floats" on the busbar and can begin delivering power as a generator. If the prime mover is disengaged while connected, the machine will operate as a motor, drawing power from the grid.
  • Small-Scale Synchronization: In low-power applications, three-lamp methods are often supplemented with a synchroscope to verify frequency matching.
  • Large-Scale Automation: For high-capacity generators in power stations, computerized systems execute the entire synchronization process autonomously, ensuring precision and safety.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!