• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Static Voltage Regulator?

Edwiin
Edwiin
Field: Power switch
China

Types of Static Voltage Regulator

The static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;

  • Servo Type Voltage Regulator

  • Magnetic Amplifier Regulator

The types of static voltage regulator are described below in details;

Servo Type Voltage Regulator

The main feature of the servo type voltage regulator is the use of the amplidyne. The amplidyne is a type of an electromechanical amplifier which amplifies the signal. The system contains the main exciter driven from the alternator shaft and an auxiliary exciter whose field winding is controlled by the amplidyne.

Both the auxiliary exciter and amplidyne are driven by a DC motor coupled to both the machines. The main exciter has a saturated magnetic circuit and hence has a rough output voltage. The armature of main and auxiliary exciter are connected in series, and this series combination excites the field winding of the alternator.

Working  of Servo type Voltage Regulator

The potential transformer provides a signal which is proportional to the output signal of the alternator.The output terminals of the alternator are connected to the electronic amplifier. When the deviation occurs in the output voltage of the alternator, then the electronic amplifier sends the voltage to the amplidyne. The amplidyne output feeds the voltage to the amplidyne control field and hence alters the auxiliary exciter field. Thus, the auxiliary and the main exciter in series adjust the excitation current of the alternator.

Magnetic Amplifier Regulator

The key element of magnetic amplifiers is a steel - cored coil that has an additional winding energized by direct current (DC). This additional winding serves the purpose of controlling a relatively high - power alternating current (AC) using a low - power DC. The steel core of the regulator is equipped with two identical AC windings, which are also referred to as load windings. These AC windings can be connected either in series or in parallel, and in both cases, they are connected in series with a load.

The series winding configuration is employed when short - time response and high voltage are required, while the parallel winding setup is utilized for applications that demand a slow response. The control winding is powered by direct current (DC). When there is no current flowing through the load winding, the AC winding presents the highest impedance and inductance to an AC source. As a result, the alternating current supplied to the load is restricted by the high inductive reactance, leading to a low load voltage.

When a DC voltage is applied, the DC magnetic flux traverses the core, driving it towards magnetic saturation. This process reduces the inductance and impedance of the AC windings. As the DC current through the control winding increases, the alternating current flowing through the field winding also rises. Consequently, a minor adjustment in the magnitude of the load current can result in a significant variation in the load voltage.

Give a tip and encourage the author!
Recommended
Three-Phase SPD: Types, Wiring & Maintenance Guide
Three-Phase SPD: Types, Wiring & Maintenance Guide
1. What Is a Three-Phase Power Surge Protective Device (SPD)?A three-phase power surge protective device (SPD), also known as a three-phase lightning arrester, is specifically designed for three-phase AC power systems. Its primary function is to limit transient overvoltages caused by lightning strikes or switching operations in the power grid, thereby protecting downstream electrical equipment from damage. The SPD operates based on energy absorption and dissipation: when an overvoltage event occ
James
12/02/2025
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Neutral Grounding Methods for Conventional-Speed Railway Power Systems
Railway power systems primarily consist of automatic block signaling lines, through-feeder power lines, railway substations and distribution stations, and incoming power supply lines. They provide electricity to critical railway operations—including signaling, communications, rolling stock systems, station passenger handling, and maintenance facilities. As an integral part of the national power grid, railway power systems exhibit distinct characteristics of both electrical power engineering and
Echo
11/26/2025
What are the safety precautions and guidelines for using AC load banks?
What are the safety precautions and guidelines for using AC load banks?
AC load banks are electrical devices used to simulate real-world loads and are widely applied in power systems, communication systems, automation control systems, and other fields. To ensure personal and equipment safety during use, the following safety precautions and guidelines must be observed:Select an appropriate AC load bank: Choose an AC load bank that meets actual requirements, ensuring its capacity, voltage rating, and other parameters satisfy the intended application. Additionally, sel
Echo
11/06/2025
What should be noted when installing a Type K thermocouple?
What should be noted when installing a Type K thermocouple?
Installation precautions for Type K thermocouples are critical to ensuring measurement accuracy and extending service life. Below is an introduction to the installation guidelines for Type K thermocouples, compiled from highly authoritative sources:1.Selection and Inspection Select the appropriate thermocouple type: Choose the right thermocouple based on the temperature range, medium properties, and required accuracy of the measurement environment. Type K thermocouples are suitable for temperatu
James
11/06/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.