• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is an Electrical Isolation Switch?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

What is an Electrical Isolation Switch?


Isolator Definition


An isolator in electrical systems is a manually operated mechanical switch that separates a part of the circuit for safe maintenance.

 


08cc5898dfb53f73626af4223e16392e.jpeg

 


A circuit breaker trips the circuit, but its open contacts are not visible from the outside. Therefore, it is unsafe to touch an electrical circuit by just switching off the breaker. For better safety, we need a way to visibly confirm that the circuit is open before touching it. An isolator is a mechanical switch that separates part of the circuit for safe maintenance. An isolator is defined as a manually operated mechanical switch that separates a part of the electrical power system. Isolators are used to open a circuit under no load. The main purpose of an isolator is to separate one part of the circuit from another and it should not be opened while current is flowing. Isolators are usually placed on both ends of a circuit breaker to allow safe repair or replacement.

 


Purpose


The main purpose of an isolator is to ensure safety by isolating a part of the circuit; it should not be operated under load.

 


Types


There are different types of isolators available depending upon system requirement such as

 


  • Double Break Isolator

  • Single Break Isolator

  • Pantograph type Isolator.


Depending upon the position in the power system, the isolators can be categorized as

 


  • Bus side isolator – the isolator is directly connected with main bus



  • Line side isolator – the isolator is situated at line side of any feeder


  • Transfer bus side isolator – the isolator is directly connected with transfer bus.

 


Constructional Features of Double Break Isolators

 


ec66e064b9340f10c896be69b05c5de2.jpeg

 


Let’s discuss constructional features of Double Break Isolators. These have three stacks of post insulators as shown in the figure. The central post insulator carries a tubular or flat male contact which can be rotated horizontally with a rotation of central post insulator. This rod type contact is also called moving contact.

 


The female type contacts are fixed on the top of the other post insulators which fitted at both sides of the central post insulator. The female contacts are generally in the form of spring-loaded figure contacts. The rotational movement of the male contact allows it to connect with the female contacts, closing the isolator. Rotating the male contact in the opposite direction disconnects it from the female contacts, opening the isolator.

 


536fb4f737207a7772557a8160c08633.jpeg

 


Rotation of the central post insulator is done by a driving lever mechanism at the base of the post insulator, and it is connected to operating handle (in case of hand operation) or motor (in case of motorized operation) of the isolator through a mechanical tie rod.

 


Constructional features of Single Break Isolators


The contact arm is divided into two parts one carries male contact and other carries female contact. The contact arm moves due to rotation of the post insulator upon which the contact arms are fitted. Rotating both post insulators stacks in opposite directions closes the contact arm, closing the isolator. Counter-rotation opens the contact arm, turning off the isolator. This type of isolator is usually motorized, but an emergency hand-operated mechanism is also available.

 


Earthing Switches


Earthing switches are mounted on the base of line side isolator. Earthing switches are usually vertically broken switches. Earthing arms (contact arm of earthing switch) usually are aligned horizontally at off condition during switching on the operation, these earthing arms rotate and move to vertical position and make contact with earth female contacts fitted at the top of the post insulator stack of the isolator at its outgoing side. The earthing arms are so interlocked with the main isolator moving contacts that it can be closed only when the primary contacts of the isolator are in open position. Similarly, the main isolator contacts can be closed only when the earthing arms are in open position.

 


Operation of Electrical Isolator


Since isolators do not have arc quenching techniques, they must be operated without current flowing through the circuit. An isolator should not open or close a live circuit to prevent arcing. Therefore, isolators must be opened after the circuit breaker and closed before the circuit breaker. The isolator can be operated by hand locally as well as by motorized mechanism from a remote position. Motorized operation arrangement costs more compared to hand operation; hence decision must be taken before choosing an isolator for the system whether hand operated or motor operated economically optimum for the system. For voltages up to 145 KV system hand operated isolators are used whereas for higher voltage systems like 245 KV or 420 KV and above motorized isolators are used.


Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.