• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Stator Earth Fault Protection of Alternator

Electrical4u
Field: Basic Electrical
0
China

Stator Earth Fault Protection Of Alternators

This is to be noted that, the star point or neutral point of stator winding of an alternator is grounded through an impedance to limit the ground fault current. Reduced ground fault current causes less damage to the stator core and winding during ground or earth fault. If the ground impedance is made quite high, the ground fault current may become even less than normal rated current of the generator. If so, the sensitivity of phase relays becomes low, even they may fail to trip during fault. For example, a current lower than rated current makes it difficult to operate differential relays for ground fault.
In that case, a sensitive ground/earth fault relay is used in addition to the
differential protection of alternator. What type of relaying arrangement will be engaged in stator earth fault protection of alternator depends upon the methods of stator neutral earthing. In the case of resistance neutral earthing the neutral point of stator winding is connected to the ground through a resistor.

Here, one current transformer is connected across the neutral and earth connection of the alternator. Now one protective relay is connected across the current transformer secondary. The alternator can feed the power system in two ways, either it is directly connected to the substation bus bar or it is connected to substation via one star delta transformer. If the generator is connected directly to the substation bus bars, the relay connected across the CT secondary, would be an inverse time relay because here, relay coordination is required with other fault relays in the system. But when the stator of the alternator is connected to the primary of a star Delta transformer, the fault is restricted in between stator winding and transformer primary winding, therefore no coordination or discrimination is required with other earth fault relays of the system.

That is why; in this case instantaneous armature attracted type relay is preferable to be connected across the CT secondary.
stator earth fault protection
It is should be noted that, 100 % of the stator winding cannot be protected in resistance neutral earthing system.

How much percentage of stator winding would be protected against earth fault, depends upon the value of earthing resistance and the setting of relay. The resistance grounding of stator winding can also be made by using a distribution transformer instead of connecting a resistor directly to the neutral path of the winding. Here, primary of a distribution transformer is connected across earth and neutral point of the stator winding.
Secondary of the transformer is loaded by a suitable resistor and one over voltage relay is also connected across the secondary of the transformer. The maximum allowable earth fault current is determined by the size of the
transformer and the value of loading register R.

This resistance is connected with the secondary, reflects to the primary of the transformer by the square of the turns ratio, thereby adding resistance to the neutral to ground path of the stator winding.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Transmission Line
In transmission lines, a "π" connection involves breaking the original line from Substation A to Substation B and inserting Substation C, forming a "π" configuration. After the "π" connection, the original single line is divided into two independent transmission lines. Following the "π" connection, Substations B and C may both be powered by Substation A (in this case, Substation C receives power via a feeder from Substation B's busbar, or possibly from another voltage point within Substation B);
Encyclopedia
09/04/2025
What are the principles of forced re-energization of transmission lines?
Principles of Forced Re-energization of Transmission LinesRegulations for Forced Re-energization of Transmission Lines Correctly select the forced re-energization end of the line. If necessary, change the connection configuration before forced re-energization, taking into account the reduction of short-circuit capacity and its impact on grid stability. There must be a transformer with its neutral point directly grounded on the busbar at the forced re-energization end. Pay attention to the impact
Edwiin
09/04/2025
Analysis of Accident Handling in Transmission Lines
Analysis of Transmission Line Fault HandlingAs a fundamental component of the power grid, transmission lines are widely distributed and numerous, often exposed to diverse geographical and climatic conditions, making them highly susceptible to faults. Common causes include overvoltage, pollution flashover, insulation damage, tree encroachment, and external damage. Line tripping is one of the most frequent faults in power plant and substation operations, with fault types including single-phase-to-
Leon
09/04/2025
The difference between transmission and distribution lines
Transmission lines and distribution lines are both used to carry electrical power from one location to another. However, they differ significantly in key aspects such as primary function, voltage levels, phase configuration, and conductor placement. These differences are essential for understanding their distinct roles in the power system.The Difference Between Transmission and Distribution Line is given below in the tabulated form.Electricity generation is a critical component of the power syst
Edwiin
09/04/2025
Related Products
  • IPXX Series Ingress Protection professional testing tool
  • KW-1 Series simulation rain - shower tester
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.