• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Stator Earth Fault Protection of Alternator

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

Stator Earth Fault Protection Of Alternators

This is to be noted that, the star point or neutral point of stator winding of an alternator is grounded through an impedance to limit the ground fault current. Reduced ground fault current causes less damage to the stator core and winding during ground or earth fault. If the ground impedance is made quite high, the ground fault current may become even less than normal rated current of the generator. If so, the sensitivity of phase relays becomes low, even they may fail to trip during fault. For example, a current lower than rated current makes it difficult to operate differential relays for ground fault.
In that case, a sensitive ground/earth fault relay is used in addition to the
differential protection of alternator. What type of relaying arrangement will be engaged in stator earth fault protection of alternator depends upon the methods of stator neutral earthing. In the case of resistance neutral earthing the neutral point of stator winding is connected to the ground through a resistor.

Here, one current transformer is connected across the neutral and earth connection of the alternator. Now one protective relay is connected across the current transformer secondary. The alternator can feed the power system in two ways, either it is directly connected to the substation bus bar or it is connected to substation via one star delta transformer. If the generator is connected directly to the substation bus bars, the relay connected across the CT secondary, would be an inverse time relay because here, relay coordination is required with other fault relays in the system. But when the stator of the alternator is connected to the primary of a star Delta transformer, the fault is restricted in between stator winding and transformer primary winding, therefore no coordination or discrimination is required with other earth fault relays of the system.

That is why; in this case instantaneous armature attracted type relay is preferable to be connected across the CT secondary.
stator earth fault protectionIt is should be noted that, 100 % of the stator winding cannot be protected in resistance neutral earthing system.

How much percentage of stator winding would be protected against earth fault, depends upon the value of earthing resistance and the setting of relay. The resistance grounding of stator winding can also be made by using a distribution transformer instead of connecting a resistor directly to the neutral path of the winding. Here, primary of a distribution transformer is connected across earth and neutral point of the stator winding.
Secondary of the transformer is loaded by a suitable resistor and one over voltage relay is also connected across the secondary of the transformer. The maximum allowable earth fault current is determined by the size of the
transformer and the value of loading register R.

This resistance is connected with the secondary, reflects to the primary of the transformer by the square of the turns ratio, thereby adding resistance to the neutral to ground path of the stator winding.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
As the title suggests, when performing live partial discharge (PD) testing on Siemens GIS using the UHF method—specifically by accessing the signal through the metal flange of the bushing insulator—you must not directly remove the metal cover on the bushing insulator.Why?You won’t realize the danger until you try. Once removed, the GIS will leak SF₆ gas while energized! Enough talk—let’s go straight to the diagrams.As shown in Figure 1, the small aluminum cover inside the red box is typically th
James
10/24/2025
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Indoor GIS equipment typically involves wall-penetrating installations, except in cases with cable in/out connections. In most cases, the main or branch bus duct extends from indoors through a wall to the outdoor side, where it connects to porcelain or composite bushings for overhead line connections. The gap between the wall opening and the GIS bus enclosure, however, is prone to water and air leakage and therefore usually requires sealing. This article discusses why cement-based sealing is not
Echo
10/24/2025
How Acoustic Imaging Locates GIS Defects
How Acoustic Imaging Locates GIS Defects
In recent years, acoustic imaging technology for GIS defect detection has developed rapidly. This technology enables intuitive sound source localization, helping operation and maintenance personnel focus on the exact location of GIS defects, thereby improving the efficiency of defect analysis and resolution.Sound source localization is only the first step. It would be even more ideal if common GIS defect types could be automatically identified using artificial intelligence (AI), along with intel
Edwiin
10/24/2025
What Are the Types of Reactors? Key Roles in Power Systems
What Are the Types of Reactors? Key Roles in Power Systems
Reactor (Inductor): Definition and TypesA reactor, also known as an inductor, generates a magnetic field within the surrounding space when current flows through a conductor. Therefore, any current-carrying conductor inherently possesses inductance. However, the inductance of a straight conductor is small and produces a weak magnetic field. Practical reactors are constructed by winding the conductor into a solenoid shape, known as an air-core reactor. To further increase inductance, a ferromagnet
James
10/23/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.