• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Rotor Earth Fault Protection of Alternator or Generator

Electrical4u
Field: Basic Electrical
0
China

The rotor of an alternator is wound by field winding. Any single earth fault occurring on the field winding or in the exciter circuit is not a big problem for the machine. But if more than one earth fault occur, there may be a chance of short circuiting between the faulty points on the winding. This short circuited portion of the winding may cause unbalance magnetic field and subsequently mechanical damage may occur in the bearing of the machine due to unbalanced rotation.

Hence it is always essential to detect the earth fault occurred on the rotor field winding circuit and to rectify it for normal operation of the machine. There are various methods available for detecting rotor earth fault of alternator or generator. But basic principle of all the methods is same and that is closing a relay circuit through the earth fault path.

There are mainly three types of rotor earth fault protection scheme used for this purpose.

  1. Potentiometer method

  2. AC injection method

  3. DC injection method

Let us discuss the methods one by one.

Potentiometer Method of Rotor Earth Fault Protection in Alternator

The scheme is very simple. Here, one resistor of suitable value is connected across the field winding as well as across exciter. The resistor is centrally tapped and connected to the ground via a voltage sensitive relay.

As it is seen in the figure below, any earth fault in the field winding as well as exciter circuit closes the relay circuit through earthed path. At the same time the voltage appears across the relay due to potentiometer action of the resistor.
potentiometer method
This simple method of rotor earth fault protection of alternator has a big disadvantage. This arrangement can only sense the earth fault occurred in the any point except the center of the field winding.

From the circuit it is also clear that in the case of earth fault on the center of the field circuit will not cause any voltage to be appeared across the relay. That means simple potentiometer methods of rotor earth fault protection, is blind to the faults at the center of the field winding. This difficulty can be minimized by using another tap on the resistor somewhere else from the center of the resistor via a push button. If this push button is pressed, the center tap is shift and the voltage will appear across the relay even in the event of central arc fault occurs on the field winding.

AC Injection Method of Rotor Earth Fault Protection in Alternator

Here, one voltage sensitive relay is connected at any point of the field and exciter circuit. Other terminal of the voltage sensitive relay is connected to the ground by a capacitor and secondary of one auxiliary transformer as shown in the figure below.
ac injection method
Here, if any earth fault occurs in the field winding or in the exciter circuit, the relay circuit gets closed via earthed path and hence secondary voltage of the auxiliary transformer will appear across the voltage sensitive relay and the relay will be operated.

The main disadvantage of this system is, there would always be a chance of leakage current through the capacitors to the exciter and field circuit. This may cause unbalancing in magnetic field and hence mechanical stresses in the machine bearings.

Another disadvantage of this scheme is that as there is different source of voltage for operation of the relay, thus the protection of rotor is inactive when there is a failure of supply in the AC circuit of the scheme.
ac injection method

DC Injection Method of Rotor Earth Fault Protection in Alternator

The drawback of leakage current of AC injection method can be eliminated in DC Injection Method. Here, one terminal of DC voltage sensitive relay is connected with positive terminal of the exciter and another terminal of the relay is connected with the negative terminal of an external DC source. The external DC source is obtained by an auxiliary transformer with bridge rectifier. Here the positive terminal of bridge rectifier is grounded.
alternator rotor protection
It is also seen from the figure below that at the event of any field earth fault or exciter earth fault, the positive potential of the external DC source will appear to the terminal of the relay which was connected to the positive terminal of the exciter. In this way the rectifier output voltage appears across the voltage relay and hence it is operated.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Transmission Line
In transmission lines, a "π" connection involves breaking the original line from Substation A to Substation B and inserting Substation C, forming a "π" configuration. After the "π" connection, the original single line is divided into two independent transmission lines. Following the "π" connection, Substations B and C may both be powered by Substation A (in this case, Substation C receives power via a feeder from Substation B's busbar, or possibly from another voltage point within Substation B);
Encyclopedia
09/04/2025
What are the principles of forced re-energization of transmission lines?
Principles of Forced Re-energization of Transmission LinesRegulations for Forced Re-energization of Transmission Lines Correctly select the forced re-energization end of the line. If necessary, change the connection configuration before forced re-energization, taking into account the reduction of short-circuit capacity and its impact on grid stability. There must be a transformer with its neutral point directly grounded on the busbar at the forced re-energization end. Pay attention to the impact
Edwiin
09/04/2025
Analysis of Accident Handling in Transmission Lines
Analysis of Transmission Line Fault HandlingAs a fundamental component of the power grid, transmission lines are widely distributed and numerous, often exposed to diverse geographical and climatic conditions, making them highly susceptible to faults. Common causes include overvoltage, pollution flashover, insulation damage, tree encroachment, and external damage. Line tripping is one of the most frequent faults in power plant and substation operations, with fault types including single-phase-to-
Leon
09/04/2025
The difference between transmission and distribution lines
Transmission lines and distribution lines are both used to carry electrical power from one location to another. However, they differ significantly in key aspects such as primary function, voltage levels, phase configuration, and conductor placement. These differences are essential for understanding their distinct roles in the power system.The Difference Between Transmission and Distribution Line is given below in the tabulated form.Electricity generation is a critical component of the power syst
Edwiin
09/04/2025
Related Products
  • KW-1 Series simulation rain - shower tester
  • IPXX Series Ingress Protection professional testing tool
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.