• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Analysis of Internal Insulation Failures in GIS Equipment and Insulation Testing Methods

Oliver Watts
Oliver Watts
Field: Inspection and testing
China

High-Voltage Conductor Spikes

During the installation of high-voltage conductors, accidental bumps or scratches can cause metallic spikes on the conductor surface, as shown in Figure 1. Under power-frequency voltage, the ionization effect of high electric fields at the spike tips generates charged particles, which may suppress partial discharge (PD) or breakdown. However, under impulse voltage, the ionization process induced by the strong electric field does not have sufficient time to develop, making PD and breakdown more likely to occur.

Contaminants on Insulator Surface

During GIS assembly, on-site cleaning is often insufficient, allowing dust to enter the GIS and deposit on insulator surfaces. In some cases, poor manufacturing processes leave gummy residues on insulators. These defects frequently cause breakdowns during on-site withstand voltage tests. The energy released during breakdown typically removes the contaminants, making it difficult to find any traces on the insulator surface or other components during post-breakdown disassembly analysis. Figure 2 shows an insulator that experienced on-site breakdown, with no visible anomalies on its surface.

Loose Metal Components

During transportation or operation, mechanical vibrations can cause shielding covers, other metal components, and fastening screws to loosen. Poor electrical contact in such cases leads to partial discharges (PD), which over time can escalate into breakdown accidents. Figure 3 illustrates the installation structure of a shielding cover prone to such issues.

Metal Powders Inside Enclosure

During transportation or operation, mechanical vibrations can cause friction between metal components, generating metal powders. Inadequate on-site hygiene during installation may leave dust or metal particles on the inner surface of the enclosure. Additionally, partial discharges due to poor electrical contact can produce metal or metal compound particles. Figure 3 shows powders generated by discharge from poor contact in a shielding cover. During operation, the jumping of metal powders can lead to breakdown accidents.

GIS Insulation Defect Testing Methods
Withstand Voltage Test

Withstand voltage tests are required during handover and after major overhauls. DL/T 555-2004 Guidelines for On-Site Withstand Voltage and Insulation Tests of Gas-Insulated Metal-Enclosed Switchgear specifies the requirements and methods for on-site tests [4]. Alternating voltage is sensitive to free conductive particles and other impurities, making it suitable for detecting defects such as contaminants on insulator surfaces, loose metal components, and metal powders inside the enclosure. Impulse voltage, effective for identifying contaminants and abnormal electric field structures, is ideal for detecting metal spikes and internal metal powders.

Partial Discharge (PD) Test

During on-site withstand voltage tests, PD measurement should be conducted simultaneously. The pulse current method is currently the primary approach for measuring PD signals under power-frequency test voltage. However, this method often fails to detect defects like metal spikes and internal metal powders. Thus, PD measurement during impulse withstand voltage tests is necessary. To avoid interference in the test circuit under impulse voltage, high-frequency, ultra-high-frequency (UHF), or ultrasonic detection methods can be used.

Live PD Detection and On-line Monitoring

For defects such as loose metal components and metal powders generated during operation, live PD detection and on-line monitoring should be actively implemented. Depending on sensor principles, live detection methods include UHF and ultrasonic techniques. Live detection is suitable for periodic inspections, while on-line monitoring is ideal for tracking known defects.

Conclusions and Outlook

GIS internal insulation defects primarily include four types: high-voltage conductor spikes, insulator surface contaminants, loose metal components, and internal metal powders. To prevent these defects from escalating into failures, insulation tests and PD detection should be conducted during handover and operation. For common defects like metal spikes and powders during handover tests, PD detection under impulse voltage should be prioritized.

Give a tip and encourage the author!
Recommended
A Guide to the Latest Transformer Testing Technologies
A Guide to the Latest Transformer Testing Technologies
Transformers come in many types, primarily oil-immersed and dry-type. Their fault manifestations are diverse, but most failures are concentrated in the windings, core, connecting components, and oil contamination. For example, winding insulation damage, open circuits, short circuits, and inter-turn short circuits at connection points. Common external symptoms of transformer faults include severe overheating, excessive temperature rise, abnormal noise, and three-phase imbalance.Routine transforme
Oliver Watts
10/20/2025
Inspection of transformers can be performed without any detection tools.
Inspection of transformers can be performed without any detection tools.
Transformers are electrical devices that change voltage and current based on the principle of electromagnetic induction. In power transmission and distribution systems, transformers are essential for stepping up or stepping down voltages to reduce energy losses during transmission. For example, industrial facilities typically receive power at 10 kV, which is then stepped down to low voltage via transformers for on-site use. Today, let’s learn about several common transformer inspection methods.1
Oliver Watts
10/20/2025
Vacuum Circuit Breakers for Capacitor Bank Switching
Vacuum Circuit Breakers for Capacitor Bank Switching
Reactive Power Compensation and Capacitor Switching in Power SystemsReactive power compensation is an effective means to increase system operating voltage, reduce network losses, and improve system stability.Conventional Loads in Power Systems (Impedance Types): Resistance Inductive reactance Capacitive reactanceInrush Current During Capacitor EnergizationIn power system operation, capacitors are switched in to improve power factor. At the moment of closing, a large inrush current is generated.
Oliver Watts
10/18/2025
Vacuum Circuit Breaker Withstand Voltage Test Guide
Vacuum Circuit Breaker Withstand Voltage Test Guide
Insulation Withstand Voltage Test Standards for Vacuum Circuit BreakersThe main purpose of the insulation withstand voltage test for vacuum circuit breakers is to verify whether the insulation performance of the equipment under high voltage is qualified, and to prevent breakdown or flashover accidents during operation. The test process must be strictly carried out in accordance with power industry standards to ensure equipment safety and power supply reliability.Test ObjectsThe test objects incl
Garca
10/18/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.