Што е анализа на потокот на енергија?
Дефиниција на анализа на потокот на натоварување
Анализата на потокот на натоварување е компјутерски процес користен за одредување на стационарните работни услови на мрежата на системот за енергија.
Цел на студијата за потокот на натоварување
Одредува работното состојба на системот за енергија под дадена услов на натоварување.
Кораци во анализата на потокот на натоварување
Студијата за потокот на натоварување вклучува следниве три корака:
Моделирање на компонентите и мрежата на системот за енергија.
Развој на равенки за потокот на натоварување.
Солвирање на равенките за потокот на натоварување со користење на нумерички техники.
Моделирање на компонентите на системот за енергија
Генератор
Натоварување
Преводна линија
Преводната линија е претставена како номинален π модел.
Каде R + jX е импедансата на линијата, а Y/2 се нарекува половинска зареднување адмитанса.
Трансформатор со не-номинално тап-менџинг
За номиналниот трансформатор релацијата
Но за не-номиналниот трансформатор
Така за не-номиналниот трансформатор дефинираме коефициентот на трансформација (а) како следи
Сега би сакале да претставиме не-номиналниот трансформатор во линија со еквивалентен модел.
Слика 2: Линија која содржи не-номинален трансформатор
Сакаме да го конвертираме горениот модел во еквивалентен π модел помеѓу автобусот p и q.
Слика 3: Еквивалентен π модел на линија
Нашата цел е да ја најдеме вредноста на овие адмитанси Y1, Y2 и Y3 така што Слика 2 може да се претстави со Слика 3.Од Слика 2 имаме,
Сега разгледајте Слика 3, од Слика 3 имаме,
Од равенките I и III, споредувајќи ги коефициентите на Ep и Eq добиваме,
Слично, од равенките II и IV имаме
Некои корисни набљудувања
Од претходната анализа гледаме дека вредностите на Y2, Y3 можат да бидат позитивни или негативни во зависност од вредноста на коефициентот на трансформација.
Добра прашање!
Y = – ve значи апсорбирање на реактивна енергија, тоа е, однесува се како индуктор.
Y = + ve значи генерирање на реактивна енергија, тоа е, однесува се како кондензатор.
Моделирање на мрежа
Разгледајте двобусов систем како што е прикажан на горната слика.
Веќе видовме дека
Генерираната енергија на автобусот i е
Барањето за енергија на автобусот i е
Значи, дефинираме нетната енергија инжектирана на автобусот i како следи