• 580-605 Watt mono-facial module with Tunnel Oxide Passivating Contacts (TOPcon) technology
  • 580-605 Watt mono-facial module with Tunnel Oxide Passivating Contacts (TOPcon) technology
  • 580-605 Watt mono-facial module with Tunnel Oxide Passivating Contacts (TOPcon) technology
580-605 Watt mono-facial module with Tunnel Oxide Passivating Contacts (TOPcon) technology
discuss personally
Model
SP-605-V
SP-600-V
SP-595-V
SP-590-V
SP-585-V
SP-580-V
Basic info
Brand Wone
Model NO. 580-605Watt MONO-FACIAL MODULE
Maximum Power 605Wp
Series 72HL4-(V)
Product Detail

Certification

  • IEC61215:2021 / IEC61730:2023 ·

  •  IEC61701 / IEC62716 / IEC60068 / IEC62804 · 

  • ISO9001:2015: Quality Management System ·

  • ISO14001:2015: Environment Management System ·

  •  ISO45001:2018: Occupational health and safety management systems.

Features

  • N-type modules with Tunnel Oxide Passivating Contacts (TOPcon) technology offer lower LID/LeTID degradation and better low light performance.

  • N-type modules with JinkoSolar's HOT 3.0 technology offer better reliability and efficiency.

  • High salt mist and ammonia resistance.

  • Certified to withstand: 5400 Pa front side max static test load 2400 Pa rear side max static test load.

  • Better light trapping and current collection to improve module power output and reliability.

  • Minimizes the chance of degradation caused by PID phenomena through optimization of cell production technology and material control.


image.png



Mechanical Characteristics

image.png

Packaging Configuration

image.png

Specifications (STC)

image.png

Application Conditions

image.png




Engineering Drawings

image.png

*Note: For specific dimensions and tolerance ranges, please refer to the corresponding detailed module drawings.

Electrical Performance 


image.png

image.png

What is TOPCon technology?

TOPCon technology (Tunnel Oxide Passivated Contact) is an advanced photovoltaic cell technology used to enhance the efficiency of solar cells in converting sunlight into electricity. The essence of TOPCon technology is the introduction of a tunneling oxide layer and a doped polysilicon layer on the rear side of the cell, which forms a passivated contact structure. This structure reduces surface recombination and metal contact recombination, thereby improving the performance of the cell.

  • Tunnel Oxide Layer: An ultra-thin tunneling oxide layer is fabricated on the back side of the cell. This layer is thin enough to allow electrons to tunnel through but thick enough to reduce surface recombination losses.

  • Doped Polysilicon Layer: A layer of doped polysilicon is deposited on top of the tunneling oxide layer. This layer can be either N-type or P-type doped and is used to collect charge carriers.

  • Passivated Contact: The passivated contact structure, formed by the tunneling oxide layer and the doped polysilicon layer, effectively reduces surface recombination and metal contact recombination, thereby increasing the cell's open-circuit voltage and short-circuit current.




Know your supplier
Wone
Main Categories
High voltage/Low voltage/Wire cable/Instrument meters/New energy/Tester/Production equipment/Generator/Electrical fittings/Integrated Electrical Equipment
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$50,000,000
Professional Experience
1 years
Workplace
65666m²m²
占位
占位
Related Products
Related Knowledges
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
Low-voltage current transformers, as indispensable measurement and protection devices in power systems, often encounter various faults when used in combination with other power equipment due to environmental factors, equipment linkage issues, and improper installation and maintenance. These faults not only affect the normal operation of power equipment but may also endanger personal safety. Therefore, it is necessary to gain an in-depth understanding of fault types, judgment methods, and prevent
Felix Spark
07/17/2025
What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!