• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


10MVA Industrial Use Cast-Resin Pad-Mounted Transformer

  • 10MVA Industrial Use Cast-Resin Pad-Mounted Transformer

Key attributes

Brand Vziman
Model NO. 10MVA Industrial Use Cast-Resin Pad-Mounted Transformer
Primary voltage 33kV
Series ZGS

Product descriptions from the supplier

Description

Description

10MVA Industrial cast-resin pad-mounted transformers are large-capacity, fully enclosed dry-type power distribution devices specifically designed for harsh industrial environments. Their core features include:

  • Cast-Resin Insulation: High-voltage windings use epoxy resin vacuum casting technology, offering full insulation and maintenance-free performance, in compliance with IEC 60076-11 standards.

  • Pad-Mounted Structure: Suitable for outdoor installation, with an IP65 protection rating (dustproof and waterproof), and can be directly placed on concrete foundations.

  • Industrial-Grade Design: Capable of withstanding high-load impacts, harmonic pollution, and extreme climates (operating temperature range: -40°C to +70°C).

Functions, Technical Realization, and Industrial Value

  • Power Conversion: Steps down medium voltage (e.g., 35kV) to industrial power voltage (6.6kV/690V) to meet the power supply requirements of large equipment.

  • Safety Isolation: Adopts an oil-free design (fire rating F1), suitable for inflammable and explosive areas, effectively reducing factory fire risks.

  • Harmonic Suppression: Equipped with an internal aluminum shielding layer, capable of withstanding total harmonic distortion (THD) ≤8% to protect precision industrial equipment from harmonic interference.

  • Overload Capacity: Supports 120% load for 4 consecutive hours and 150% load for 1 hour (in line with IEC 60076-12 standards), addressing peak production loads.

Typical Application Scenarios

Heavy Industry Sector

  • Iron and Steel Metallurgy: Powers arc furnaces, rolling mills, etc., with the ability to withstand frequent short-circuit impacts.

  • Chemical Parks: Adopts anti-corrosion design (316 stainless steel casing) to adapt to corrosive environments with hydrogen sulfide (H₂S), chlorine (Cl₂), etc.

  • Automotive Manufacturing: Used with frequency converter loads, suppressing harmonic interference by configuring 12% reactance rate.

Energy Infrastructure

  • PV/Wind Power Step-Up: Integrates DC component blocking function on the 35kV side, suitable for new energy power generation scenarios.

  • Data Centers: Pursues 99.99% power availability with dual-winding redundancy design.

Special Environments

  • Mining: Features seismic design compliant with EN 60068-3-3 Class 2 standards, adapting to underground vibration environments.

  • Ports: Adopts salt spray protection design, reaching ISO 9227 C5-M grade to resist marine climate erosion.

Parameter:

 

Know your supplier
Online store
On-time delivery rate
Response time
100.0%
≤4h
Company overview
Workplace: 10000m² Total staff: 300 Highest Annual Export(usD): 150000000
Workplace: 10000m²
Total staff: 300
Highest Annual Export(usD): 150000000
Services
Business Type: Design/Manufacture/Sales
Main Categories: High Voltage Electrical Apparatus/Electric transformer
Whole life care manager
Whole-life care management services for equipment procurement, use, maintenance, and after-sales, ensuring safe operation of electrical equipment, continuous control, and worry-free electricity consumption.
The equipment supplier has passed platform qualification certification and technical evaluation, ensuring compliance, professionalism, and reliability from the source.

Related Products

Related Knowledges

  • Main Transformer Accidents and Light Gas Operation Issues
    1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
    02/05/2026
  • Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
    Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
    01/30/2026
  • Neutral point grounding operation mode for 110kV~220kV power grid transformers
    The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
    01/29/2026
  • Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
    Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
    01/29/2026
  • Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
    Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
    01/29/2026
  • Understanding Transformer Neutral Grounding
    I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
    01/29/2026

Related Solutions

  • Choosing Vizman Distribution Transformers: Innovative Customization to Meet Diverse Power Needs
    Distribution transformers are the heart of local electricity distribution systems. They step down voltage, enabling safe and efficient power supply to homes and businesses.At Vizman Electric Power Technology Co., Ltd., we understand the critical role of distribution transformers in the energy ecosystem. That's why we specialize in manufacturing high-quality distribution transformers, providing tailored solutions to meet diverse energy needs.1.Solutions Offered by Vizman Electric Power Technology
    04/16/2025
  • SF6 Circuit Breaker Solutions in High-Voltage Power Systems: A Case Study of VZIMAN Company
    1. Challenges in High-Voltage Power Systems1.1 High-voltage power systems, as the core of power transmission, face critical challenges: Equipment Performance Limits: With increasing voltage levels (e.g., 500kV and above), traditional circuit breakers struggle to meet high breaking capacities (over 40kA) and rapid insulation recovery requirements. Overvoltage Risks: Switching capacitive loads (e.g., capacitor banks) may cause reignition, leading to dangerous overvoltages. Poor Environmental Adapt
    05/13/2025
  • VZIMAN Company SF6 Circuit Breaker Solutions for Renewable Energy Grid Integration
    1. Current Challenges in Renewable Energy Grid Integration1.1 Grid Frequency Fluctuations and Stability IssuesThe intermittency and variability of renewable energy sources (e.g., wind and solar) lead to frequent grid frequency changes. Traditional circuit breakers struggle to respond rapidly to such dynamic loads, potentially causing equipment damage or regional blackouts. For instance, during sudden drops in wind power or abrupt solar output fluctuations, the grid must isolate faults within mil
    05/13/2025
Haven't found the right supplier yet? Let matching verified suppliers find you. Get Quotation Now
Haven't found the right supplier yet? Let matching verified suppliers find you.
Get Quotation Now
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.