Do you know the difference between the operating principles of light and heavy gas protection for the main transformer?

08/15/2025

For short-circuit faults on transformer lead-out wires, bushings, and internal components, appropriate protective devices shall be installed, and shall comply with the following provisions:

  • Transformers with a capacity of 10 MVA or above operating individually, and transformers with a capacity of 6.3 MVA or above operating in parallel, shall be equipped with pilot differential protection. Important transformers with a capacity of 6.3 MVA or below operating individually may also be equipped with pilot differential protection.

  • Transformers below 10 MVA may be equipped with instantaneous overcurrent protection and overcurrent protection. For transformers of 2 MVA and above, if the sensitivity factor of the instantaneous overcurrent protection does not meet requirements, pilot differential protection is recommended.

  • For transformers with a capacity of 0.4 MVA and above, primary voltage of 10 kV or below, and delta-star winding connections, two-phase three-relay overcurrent protection may be used.

  • All protective devices specified above shall operate to trip circuit breakers on all sides of the transformer.

During transformer operation, internal faults may sometimes be difficult to detect and handle promptly, potentially leading to accidents. The installation of gas relay protection can help prevent such incidents to a certain extent.

Introduction to Gas Protection

Gas protection is one of the main protections for transformers and belongs to non-electrical protection. It is divided into light gas protection and heavy gas protection. The operating principles differ: Light gas protection operates when minor internal faults cause insulation oil to decompose and generate gas due to heating. The accumulated gas in the upper part of the relay causes the open cup to lose buoyancy and sink, actuating the reed contact to close and send an alarm signal. Heavy gas protection operates when a serious internal fault causes the oil to rapidly expand due to heating or arcing, generating a large volume of gas and a high-speed oil flow toward the oil reservoir. This flow impacts the baffle inside the relay, overcoming spring resistance and moving the magnet to close the reed contact, resulting in a trip command. It should normally be set to trip mode. In addition to gas protection, non-electrical protections for large oil-immersed transformers typically include pressure relief and sudden pressure change protection.

The main difference between light and heavy gas protection lies in the relay's setting values: light gas protection only issues an alarm signal without tripping, while heavy gas protection directly initiates a trip.

The zero-sequence voltage equals the vector sum of the three-phase voltages. The calculation method for zero-sequence current is similar.

The principle of heavy gas protection is based on a float and reed relay design. The relay's oil chamber is connected to the transformer tank. When a fault generates gas, the accumulation of gas lowers the float to a certain position, closing the first-stage contact to trigger a light gas alarm. As gas continues to accumulate, the float descends further, activating the second-stage contact, closing the heavy gas circuit, and tripping the circuit breaker.

Difference in Operating Principles between Light and Heavy Gas Protection

Light gas relays consist of an open cup and reed contacts, and operate to send a signal. Heavy gas relays consist of a baffle, spring, and reed contacts, and operate to trip.

Under normal operation, the relay is filled with oil, and the open cup floats due to buoyancy, keeping the reed contacts open. When a minor internal fault occurs, the slowly rising gas enters the relay, lowering the oil level. The open cup rotates counterclockwise around its pivot, closing the reed contact and issuing an alarm signal. When a serious internal fault occurs, a large volume of gas is rapidly generated, causing a sudden increase in tank pressure and a high-speed oil flow toward the oil reservoir. This flow impacts the relay's baffle, which overcomes the spring resistance, moves the magnet toward the reed contact, closes the contact, and triggers a trip.

The relay's relay characteristic refers to the relationship between its input and output quantities throughout the entire operation process. Whether operating or returning, the relay moves directly from its initial position to its final position without stopping at any intermediate position. This "step-change" characteristic is known as the relay characteristic.

Hello! I'm Leon, with 20 years of extensive experience in the power industry. My expertise spans from power distribution equipment to grid operations and maintenance, grounded in robust hands-on and theoretical knowledge. Currently, I focus on sharing insights into electrical equipment fault diagnosis, demystifying complex technical challenges through accessible explanations. I welcome collaboration with industry peers and enthusiasts to collectively explore the intricacies of the power sector.

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!