• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Comprehensive Guide to Power Transformer Types and Working Principles

Vziman
Vziman
Field: Manufacturing
China

Power transformers can be classified into several categories based on their purpose, structure, and other characteristics:

  • According to purpose:

    • Step-up transformer: Increases voltage from low to high levels, enabling efficient long-distance power transmission.

    • Step-down transformer: Decreases voltage from high to low levels, supplying power to local or nearby loads through distribution networks.

  • According to phase number:

    • Single-phase transformer

    • Three-phase transformer

  • According to winding arrangement:

    • Single-winding transformer (autotransformer), providing two voltage levels

    • Double-winding transformer

    • Triple-winding transformer

  • According to winding material:

    • Copper wire transformer

    • Aluminum wire transformer

  • According to voltage regulation:

    • No-load tap changer transformer

    • On-load tap changer transformer

  • According to cooling medium and method:

    • Oil-immersed transformer: Cooling methods include natural cooling, forced air cooling (using fans on radiators), and forced oil circulation with air or water cooling, commonly used in large power transformers.

    • Dry-type transformer: Windings are either exposed to a gaseous medium (such as air or sulfur hexafluoride) or encapsulated in epoxy resin. Widely used as distribution transformers, dry-type units are currently available up to 35 kV and have strong application potential.

Working Principle of Transformers:

Transformers operate on the principle of electromagnetic induction. Unlike rotating machines such as motors and generators, transformers function at zero rotational speed (i.e., they are static). The core components are the windings and the magnetic core. During operation, the windings form the electrical circuit, while the core provides the magnetic path and mechanical support.

When AC voltage is applied to the primary winding, an alternating magnetic flux is established in the core (converting electrical energy into magnetic energy). This changing flux links with the secondary winding, inducing an electromotive force (EMF). When a load is connected, current flows in the secondary circuit, delivering electrical energy (converting magnetic energy back into electrical energy). This "electric–magnetic–electric" energy conversion process constitutes the fundamental operation of a transformer.

Give a tip and encourage the author!
Recommended
What are the common issues in SF₆ gas circuit faults and circuit breaker failure-to-operate faults?
What are the common issues in SF₆ gas circuit faults and circuit breaker failure-to-operate faults?
This article categorizes faults into two main types: SF₆ gas circuit faults and circuit breaker failure-to-operate faults. Each is described below:1.SF₆ Gas Circuit Faults1.1 Fault Type: Low gas pressure, but density relay does not trigger alarm or lockout signalCause: Faulty density gauge (i.e., contact not closing)Inspection & Handling: Calibrate actual pressure using a standard gauge. If confirmed, replace the density gauge.1.2 Density Relay Triggers Alarm or Lockout Signal (but pressure
Felix Spark
10/24/2025
GIS Bolt Tightening Torque Standards by Material & Size
GIS Bolt Tightening Torque Standards by Material & Size
GIS (Gas-Insulated Metal-Enclosed Switchgear) contains numerous bolted and screwed connections, and the tightening torque varies depending on bolt material, size, and application. The recommended tightening torque values are listed below for reference:Table 1 Tightening Torque Values for Bolts of Different Materials and Sizes (N·m / kgf·cm) Thread Diameter (mm) Q235 (A3) Cast Insulator 45 Steel Chrome-Molybdenum Steel Stainless Steel M6 5.88/60 3.92/40 12.3/125 19.6/
Encyclopedia
10/24/2025
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
Why You Can't Remove Siemens GIS Bushing Cover for PD Testing
As the title suggests, when performing live partial discharge (PD) testing on Siemens GIS using the UHF method—specifically by accessing the signal through the metal flange of the bushing insulator—you must not directly remove the metal cover on the bushing insulator.Why?You won’t realize the danger until you try. Once removed, the GIS will leak SF₆ gas while energized! Enough talk—let’s go straight to the diagrams.As shown in Figure 1, the small aluminum cover inside the red box is typically th
James
10/24/2025
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Why Cement Sealing Is Banned for GIS Wall Penetrations?
Indoor GIS equipment typically involves wall-penetrating installations, except in cases with cable in/out connections. In most cases, the main or branch bus duct extends from indoors through a wall to the outdoor side, where it connects to porcelain or composite bushings for overhead line connections. The gap between the wall opening and the GIS bus enclosure, however, is prone to water and air leakage and therefore usually requires sealing. This article discusses why cement-based sealing is not
Echo
10/24/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.