• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Dead Short: What is it? (vs Short Circuit vs Bolted Fault vs Ground Fault)

Electrical4u
Electrical4u
Field: Basic Electrical
0
China
what is a dead short

What is a Dead Short?

A dead short is an electrical circuit that results in current flowing along an unintended path with no resistance or impedance. This results in an excessive current flowing through the circuit, which can damage equipment or cause electrical shocks to those nearby.

A dead short is difficult to track and diagnose as the current builds rapidly and trips the breaker immediately.

It is mainly caused due to direct connection between positive and negative power wires or a direct connection between the positive wire and the ground.

Dead shorts are very dangerous because it causes a high amount of current to flow through the circuit.

Dead Short vs Short Circuit

To understand the difference between a dead short and a short circuit, let’s take an example. Consider a voltage difference between two points is 150 V.

If we measure the voltage between two points in normal conditions, it shows 150 V. But, if the voltage between two points is less than 150 V, it is called a short circuit.

Some voltage drop occurs during the short circuit, and some resistance appears between these two points.

If the measured voltage is 0 V, it is called dead short. It means there is zero resistance of a circuit.

The difference between the normal condition, short-circuit, and dead-short describes in the figure below.



normal condition short circuit condition dead short condition
Normal Condition, Short-circuit Condition, Dead Short Condition



Dead Short vs Bolted Fault

A bolted fault is defined as a fault with zero impedance. It produces extreme fault current in the system.

When all conductors are connected to the ground with a metallic conductor, the fault is known as a bolted fault.

The bolted fault (bolted short) is quite similar to the dead short. As in the dead short also, the resistance is zero.

Dead Short vs Ground Fault

The ground fault occurs in the power system when the hot wire (live wire) accidentally connected with the earth wire or grounded equipment frame.

In this condition, the frame of equipment energies with dangerous voltage. In the ground fault, there is some amount of ground resistance present. And the fault current depends on the ground resistance.

Therefore, the ground fault is different from the dead short.

Example of a Dead Short

To understand the dead short, let’s take an example. Consider a network having three resistors connected in series, as shown in the figure below.



example of dead short



In normal conditions, the current passes through the circuit are I ampere. And the total resistance of a circuit is REQ.

REQ=5+15+20

\[ R_{EQ} = 40 \Omega \]


According to ohm’s law;


\[ V = IR \]


\[ 40 = I (40) \]


\[ I = 1 A \]


Therefore, the current that passes through the circuit is 1 A in normal condition.

If we short battery terminals by a metallic wire or very low resistance (ideally zero resistance), the circuit looks like the figure below.



dead short



As points A and B are shorted with ideally zero resistance, it is known as dead short. And the current that passes through the resisters is zero.

All the current will flow through the shorted terminals. Because the current always follows a low resistance path.

Due to zero resistance, the current passes through terminals A and B is;


\[ V = IR\]


\[ I = \frac{V}{R} \]


\[ I = \frac{40}{0} \]


\[ I = \infy \]

From the calculation, infinite current will flow through the point A and B. But practically, there is some amount of current that will flow. And this current is very high compared to the standard current (1 A).

In a power system network, you can consider a part of a network instead of three resisters. The circuit will look like the figure below.



dead short in network



Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
PT Fuse Slow Blow: Causes, Detection & Prevention
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
Edwiin
10/24/2025
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
Echo
10/24/2025
Fuse Maintenance & Replacement: Safety and Best Practices
Fuse Maintenance & Replacement: Safety and Best Practices
1. Fuse MaintenanceFuses in service should be regularly inspected. The inspection includes the following items: Load current should be compatible with the rated current of the fuse element. For fuses equipped with a fuse blown indicator, check whether the indicator has actuated. Check the conductors, connection points, and the fuse itself for overheating; ensure connections are tight and making good contact. Inspect the fuse exterior for cracks, contamination, or signs of arcing/discharge. Liste
James
10/24/2025
Maintenance and Repair Items for 10kV High-Voltage Switchgear
Maintenance and Repair Items for 10kV High-Voltage Switchgear
I. Routine Maintenance and Inspection(1) Visual Inspection of Switchgear Enclosure No deformation or physical damage to the enclosure. Protective paint coating shows no severe rust, peeling, or flaking. Cabinet is securely installed, clean on the surface, and free of foreign objects. Nameplates and identification labels are neatly affixed and not falling off.(2) Check of Switchgear Operating Parameters Instruments and meters indicate normal values (comparable to typical operating data, with no s
Edwiin
10/24/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.