• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is the Parallel Operation of DC Generators?

Encyclopedia
Field: Encyclopedia
0
China

What is the Parallel Operation of DC Generators?


Parallel operation definition of DC generator


In modern power systems, power is usually provided by many parallel synchronous generators to ensure continuous operation of the plant. The use of single large generators is now obsolete. Having two generators in parallel helps keep them in sync. Adjusting their armature currents and properly connecting them to the bus bars can solve any synchronization problems.


Busbar connection


Generators in power plants are connected by thick copper bars, called busbars, that act as positive and negative electrodes. To parallel the generator, connect the positive terminal of the generator to the positive terminal of the bus, and the negative terminal of the generator to the negative terminal of the bus, as shown in the figure.

To connect the second generator to the existing generator, first increase the speed of the prime mover of the second generator to the rated speed. Then, close switch S4.


Circuit breaker V2 (voltmeter) is connected to the open switch S 2 close to complete the circuit. The excitation of generator 2 is increased with the help of a field rheostat until it produces a voltage equal to the bus voltage.


Next, turn off the main switch S2 to connect the second generator in parallel with the existing generator. At this point, generator 2 is not yet powered because its induced electromotive force is equal to the bus voltage. This state is called "floating," which means the generator is ready but not providing current.


In order to supply current from generator 2, its induced e.m.f. E must be greater than the bus voltage V. By strengthening the excitation current, the induced electromotive force of generator 2 can be increased and the supply current can be started. In order to maintain the bus voltage, the magnetic field of generator 1 is weakened so that the value remains constant.


The field current I is given by Where, R


786715bccdb1f10821bef3c6af44e0f3.jpeg


b6f2dec2a3e26264fb418a323d48f1e6.jpeg


Load distribution


By adjusting the induced electromotive force, the load is transferred to another generator, but in modern power plants everything is done by the "sychroscope", which gives instructions to the governor of the prime mover. Let's assume that the two generators have different load voltages. Then the load distribution between these generators will be the value of the current output depending on the value of E 1 and E3 which can be managed by a field rheostat to keep the bus voltage constant.


6834c43b1adc011cbae18a4631f44ffe.jpeg


Advantage


Smooth power supply: If the generator fails, the power supply will not be interrupted. If one generator fails, the other healthy generator sets can continue to maintain continuity of power.


Easy maintenance:Routine maintenance of the generator is needed from time to time. But for that, the power supply must not be impeded. In parallel generators, routine checks can be carried out one by one.


Easy to increase factory capacity: Electricity demand is increasing. To meet the needs of power generation, additional new units can be operated in parallel with operating units.


Matters needing attention


  • The specifications of each generator are different. When they are synchronized together, their speed is locked into the overall speed of the system.



  • The full load of the system should be distributed among all the generators.



  • There should be a controller to check the engine's parameters. This can be done with modern digital controllers available on the market.



  • Voltage regulation plays an important role in the whole system. If the voltage of one unit drops, it ends up bearing the entire voltage load of the shunt generator system compared to the other units.


  • Extra precautions should be taken when connecting terminals to bus bars. If the generator is connected to the wrong rod polarity, it may cause a short circuit.


Give a tip and encourage the author!
Recommended
Ensuring Reliability: A Deep Dive into Transformer Maintenance
IntroductionElectric transformers are the backbone of modern power distribution systems, silently enabling the reliable delivery of electricity to homes, businesses, and industries. As these critical assets age and the demand for uninterrupted power grows, the importance of diligent transformer maintenance has never been greater. This essay explores the essential role of transformer maintenance, highlighting the value of proactive care, the impact of advanced diagnostic technologies, and the tra
Vziman
09/03/2025
What factors need to be considered when designing a transformer?
Transformer design is a complex process that requires consideration of multiple factors to ensure safe and efficient operation. In addition, compliance with international and local regulations is essential to guarantee that transformers meet safety and performance standards. Below are key factors to consider in transformer design and the relevant regulations to follow:Transformer Design Factors: Voltage and Frequency: Determine the input and output voltage levels and the operating frequency. The
Vziman
09/02/2025
What failure modes are possible in a transformer? How to identify and fix these failures?
Transformers are critical components in power systems, and various failure modes can affect their operation. Timely identification and resolution of these failure modes are essential to prevent costly downtime and ensure system reliability. Below are some common transformer failure modes, along with methods to identify and address them: Insulation FailureIdentification: Insulation failure leads to decreased insulation resistance, which can be detected through insulation resistance testing (megge
Edwiin
09/02/2025
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
Edwiin
08/29/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.