Ground Clearance of Different Transmission Lines

Electrical4u
03/22/2024

What Is The Ground Clearance Of Different Transmission Lines

Indian Electricity Rule 1956, Clause No 77, mentions, the minimum distance between bottom conductor and ground of different overhead transmission lines.

As per Indian Electricity Rule 1956, Clause No 77, the minimum distance between bottom conductor and ground of a 400KV transmission line is 8.84 meter.

As per this clause, of IE 1956, minimum ground clearance of 33KV uninsulated electrical conductor is 5.2 meter.
This clearance is increased by 0.3 meter for every 33KV above 33KV.
According to this logic, the minimum ground clearance of 400KV
transmission line would be,
400KV – 33KV = 367KV and 367KV/33KV ≈ 11
Now, 11 × 0.3 = 3.33 meter.
So, as per logic, the ground clearance of 400KV bottom conductor would be, 5.2 + 3.33 = 8.53 ≈ 8.84 meter(considering other factors).

For, same logic the minimum ground clearance of 220KV transmission line would be,
220KV – 33KV = 187KV and 187KV/33KV ≈ 5.666
Now, 5.666 X 0.3 = 1.7 meter.
So, as per logic, the ground clearance of 220KV bottom conductor would be, 5.2 + 1.7 = 6.9 ≈ 7 meter. For, same logic the minimum ground clearance of 132KV
transmission line would be,
132KV – 33KV = 99KV and 99KV/33KV = 3
Now, 3 × 0.3 = 0.9 meter.
So, as per logic, the ground clearance of 132KV bottom conductor would be, 5.2 + 0.9 = 6.1 meter. The minimum clearance of 66KV transmission line is also taken as 6.1 meters. Actually, in any case, the ground clearance should not be less than 6.1 meters across a street. So, ground clearance of 33KV line should also be maintained 6.1 meters across a street. Ground clearance of 33KV bottom conductor would be 5.2 meters above cultivated land.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
What is a step voltage regulator?
What is a step voltage regulator?
Hey everyone, I'm Blue — an electrical engineer with over 20 years of experience, currently working at ABB. My career has mainly focused on circuit breaker design, transformer management, and providing power system solutions for various utility companies.Today, someone asked the question: "What is a step voltage regulator?" Let me explain it in simple but professional terms.So, a step voltage regulator is basically a device used in power distribution systems to keep the voltage stable. Think of
Master Electrician
07/11/2025
Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!