• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Is there a correlation between the size of the circuit breaker and its strength?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

There is indeed a correlation between the size of the circuit breaker (which usually refers to its rated current, which is the number of amps) and its strength (which is its ability to protect). The size selection of the circuit breaker should be based on the specifications of the wires in the circuit and the expected maximum load current. Here's a detailed explanation:


The relationship between circuit breaker size and strength


Protection ability


The size (rated current) of the circuit breaker determines the maximum current it can withstand. When the current exceeds the rated value of the circuit breaker, the circuit breaker will trip, cutting off the power supply, thereby protecting the circuit from overcurrent or short circuit damage.


Selection basis


The selection of circuit breakers is usually based on the current carrying capacity of the wires in the circuit (i.e. the maximum current that the wires can safely carry). The rated current of the circuit breaker should not be greater than the carrying capacity of the wire to ensure that the wire will not overheat or fuse due to overcurrent.


Relationship between smaller wires and high amperage circuit breakers under the same load


It is inappropriate and unsafe to use a smaller diameter (cross-sectional area) wire with a higher amperage circuit breaker under the same load. Here's why:


Overload risk


Thinner wires have lower carrying capacity. If a circuit breaker with a high amperage is used, the wire may overheat or even fuse when the current exceeds the current carrying capacity of the wire but does not reach the breaker trip threshold, resulting in safety accidents such as fire.


Protection mismatch


The level of protection between the wire and the circuit breaker should match. If the rated current of the circuit breaker is higher than the carrying capacity of the wire, the circuit breaker will not trip in time when the current exceeds the safe carrying capacity of the wire, thus losing its protective effect.


The right way to pair


In order to ensure the safety of the circuit, the following steps should be followed to select the appropriate wire and circuit breaker:


Determined load current


The required current is calculated from the maximum expected load in the circuit.


Choose the right wire


Select a wire with sufficient carrying current according to the load current. The cross-sectional area of the wire should at least be able to withstand the maximum expected current in the circuit.


Select the appropriate circuit breaker


The rated current of the circuit breaker should be slightly greater than or equal to the carrying current of the wire, but not too large to ensure that the circuit breaker can cut off the power supply in time when the wire is overloaded.


Give an example


Suppose you have A circuit where the maximum expected load current is 15 amps (A) :


Select wire


Select a wire with at least 15A carrying capacity. For example, AWG 14 wire can normally carry 15A of current.


Select circuit breaker


Select a circuit breaker with a rated current of 15A or slightly greater. For example, a circuit breaker of 15A or 20A can be selected, but it is not recommended to choose a circuit breaker greater than 20A, because this may cause the wire to overload.


Sum up


There is a close correlation between the size of the circuit breaker and its strength, and the correct pairing can ensure the safety of the circuit. Smaller diameter wires should not be used with higher amperage circuit breakers under the same load, as this increases the risk of overload and can lead to safety incidents. For the safe operation of the circuit, the matching of the wire and circuit breaker should be selected based on the load current and the carrying capacity of the wire.


Give a tip and encourage the author!
Recommended
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
A "2-in 4-out 10 kVsolid-insulated ring main unit" refers to a specific type of ring main unit (RMU). The term "2-in 4-out" indicates that this RMU has two incoming feeders and four outgoing feeders.10 kVsolid-insulated ring main unit are equipment used in medium-voltage power distribution systems, primarily installed in substations, distribution stations, and transformer stations to distribute high-voltage power to low-voltage distribution networks. They generally consist of high-voltage incomi
Garca
12/10/2025
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-voltage distribution lines refer to the circuits that, through a distribution transformer, step down the high voltage of 10 kV to the 380/220 V level—i.e., the low-voltage lines running from the substation to the end-use equipment.Low-voltage distribution lines should be considered during the design phase of substation wiring configurations. In factories, for workshops with relatively high power demand, dedicated workshop substations are often installed, where transformers supply power direc
James
12/09/2025
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Gap Protection & Standard Shutdown Steps
How to Implement Transformer Neutral Grounding Gap Protection Measures?In a certain power grid, when a single-phase ground fault occurs on a power supply line, both the transformer neutral grounding gap protection and the power supply line protection operate simultaneously, causing an outage of an otherwise healthy transformer. The main reason is that during a system single-phase ground fault, the zero-sequence overvoltage causes the transformer neutral grounding gap to break down. The resulting
Noah
12/05/2025
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Chinese Protection Relay Earns IEC 61850 Ed2.1 Level-A Certification
Recently, the NSR-3611 low-voltage protection and control device and the NSD500M high-voltage measurement and control device—both developed by a Chinese protection and control equipment manufacturer—successfully passed the IEC 61850 Ed2.1 Server Level-A certification test conducted by DNV (Det Norske Veritas). The devices have been awarded the international Level-A certification by the Utilities Communication Architecture International Users Group (UCAIug). This milestone marks the manufacturer
Baker
12/02/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.