ვოლტაჟის სტაბილურობის განმარტება
ელექტროენერგიის სისტემაში ვოლტაჟის სტაბილურობა განიხილება როგორც შესაძლებლობა დარწმუნდება ყველა ბუსზე ადეკვატური ვოლტაჟის შესანარჩუნებლად ნორმალური მუშაობის პირობებში და დარღვევის შემდეგ. ნორმალური მუშაობისას სისტემის ვოლტაჟი სტაბილური რჩება; თუმცა, ფართოდ ან დარღვევის შემთხვევაში, შეიძლება გამოიწვიოს ვოლტაჟის დარღვევა, რაც გამოიწვევს პროგრესულ და კონტროლში არამდგრად ვოლტაჟის დაცემას. ვოლტაჟის სტაბილურობა ზოგჯერ უწოდებენ "ტვირთის სტაბილურობას."
ვოლტაჟის დარღვევა შეიძლება გამოიწვიოს ვოლტაჟის დაცემა, თუ დარღვევის შემდეგ ტვირთის ახლოს ნაბიჯის სტაბილური ვოლტაჟი დაეცემა ადეკვატური ზღვის ქვეშ. ვოლტაჟის დაცემა არის პროცესი, რომელშიც ვოლტაჟის დარღვევა გამოიწვევს კრიტიკული ნაწილების მარტივ ვოლტაჟის პროფილის მიღმა, რაც შეიძლება გამოიწვევს სრულ ან ნაწილობრივ დაბნევას. შესაბამისად, "ვოლტაჟის დარღვევა" და "ვოლტაჟის დაცემა" ტერმინები ხშირად იყენებენ ერთმანეთის ნაცვლად.
ვოლტაჟის სტაბილურობის კლასიფიკაცია
ვოლტაჟის სტაბილურობა ყოფილა ორ ძირითად ტიპად:
დიდი დარღვევის ვოლტაჟის სტაბილურობა:ეს აღნიშნავს სისტემის შესაძლებლობას დარწმუნდება ვოლტაჟის კონტროლის შესანარჩუნებლად დიდი დარღვევების, როგორიცაა სისტემის ფართოდ, უცელი ტვირთის ან გენერაციის დაკარგვის შემდეგ. ამ სტაბილურობის შეფასება მოითხოვს სისტემის დინამიური პერფორმანსის ანალიზს საკმარისი დროს, რომელიც იკავებს მოწყობილობების, როგორიცაა ტვირთის დროს ტეპის ცვლილების ტრანსფორმატორები, გენერატორების ველის კონტროლები და დენის ლიმიტერები. დიდი დარღვევის ვოლტაჟის სტაბილურობა ჩვეულებრივ იშლება არაწრფივი დროის დომეინის სიმულაციებით სისტემის ზუსტი მოდელირებით.
პატარა დარღვევის ვოლტაჟის სტაბილურობა:ენერგიის სისტემა გამოიყენებს პატარა დარღვევის ვოლტაჟის სტაბილურობას, თუ პატარა დარღვევების შემდეგ ტვირთის ახლოს ვოლტაჟები არ იცვლება ან რჩება მათ დარღვევამდე მნიშვნელობების ახლოს. ეს კონცეფცია მჭიდროდ ურთიერთდება სტაციონარული პირობებთან და შეიძლება ანალიზირდეს პატარა-სიგნალის სისტემის მოდელებით.
ვოლტაჟის სტაბილურობის ზღვა
ვოლტაჟის სტაბილურობის ზღვა არის კრიტიკული თარიღი ელექტროენერგიის სისტემაში, რომელიც შემდეგ არ შესაძლებელია რეაქტიული ძალის ინჟექციით დააბრუნოს ვოლტაჟები ნომინალურ დონეებზე. ამ ზღვამდე სისტემის ვოლტაჟები შეიძლება დარწმუნდება რეაქტიული ძალის ინჟექციით და სტაბილურობის შენარჩუნებით.უკარგებელი ხაზის დიაგრამაზე ძალის ტრანსფერი შეიძლება გამოითვალოს შემდეგი განტოლებით:
სადაც P = ძალის ტრანსფერი ფაზის მიხედვით
Vs = გაგზავნის ფაზის ვოლტაჟი
Vr = მიღების ფაზის ვოლტაჟი
X = ტრანსფერის რეაქტიული დანიშნულება ფაზის მიხედვით
δ = ფაზის კუთხე Vs და Vr შორის.
რადგან ხაზი უკარგებელია
არიდების ძალის მუდმივობის შემთხვევაში,
მაქსიმალური ძალის ტრანსფერისთვის: δ = 90º, ასე რომ, როდესაც δ→∞
ზემოთ მოყვანილი განტოლება განსაზღვრავს კრიტიკული წერტილის პოზიციას δ და Vs შორის კურვის ზე, რით არის არიდების ბოლოს ვოლტაჟის მუდმივობის დაშვება. მსგავსი შედეგი შეიძლება მიიღოს განხილვით, რომ გაგზავნის ბოლოს ვოლტაჟი მუდმივია და Vr არის ცვლადი პარამეტრი სისტემის ანალიზისას. ამ სცენარიუსში საბოლოო განტოლება იქნება
მიღების ბოლოს რეაქტიული ძალის გამოსახულება შეიძლება ჩაიწეროს შემდეგი განტოლებით
ზემოთ მოყვანილი განტოლება წარმოადგენს სტაციონარული ვოლტაჟის სტაბილურობის ზღვას. ეს ნიშნავს, რომ სტაციონარული სტაბილურობის ზღვაზე რეაქტიული ძალა უსასრულოდ მიიდგება. ეს ნიშნავს, რომ dQ/dVr წარმოებული ხდება ნული. ასე რომ, როტორის კუთხის სტაბილურობის ზღვა სტაციონარული პირობების შემთხვევაში ემთხვევა სტაციონარული ვოლტაჟის სტაბილურობის ზღვას. ადდიტიურად, სტაციონარული ვოლტაჟის სტაბილურობა ასევე არის ტვირთის მიერ გავლენის ქვეშ.