• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Understanding Voltage Stability in Power Systems: Large vs. Small Disturbance and Stability Limits

Encyclopedia
Field: Encyclopedia
0
China

Definition of Voltage Stability

Voltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."

Voltage instability can trigger voltage collapse if the post-disturbance equilibrium voltage near loads falls below acceptable limits. Voltage collapse is a process in which voltage instability results in an extremely low voltage profile across critical parts of the system, potentially causing a total or partial blackout. Notably, the terms "voltage instability" and "voltage collapse" are often used interchangeably.

Classification of Voltage Stability

Voltage stability is categorized into two main types:

  • Large-Disturbance Voltage Stability:This refers to the system’s ability to maintain voltage control following significant disturbances, such as system faults, sudden load loss, or generation loss. Assessing this form of stability requires analyzing the system’s dynamic performance over a timeframe long enough to account for the behavior of devices like on-load tap-changing transformers, generator field controls, and current limiters. Large-disturbance voltage stability is typically studied using nonlinear time-domain simulations with accurate system modeling.

  • Small-Disturbance Voltage Stability:A power system operating state exhibits small-disturbance voltage stability if, after minor disturbances, voltages near loads either remain unchanged or stay close to their pre-disturbance values. This concept is closely linked to steady-state conditions and can be analyzed using small-signal system models.

Voltage Stability Limit

The voltage stability limit is the critical threshold in a power system beyond which no amount of reactive power injection can restore voltages to their nominal levels. Up to this limit, system voltages can be adjusted through reactive power injections while maintaining stability.The power transfer over a lossless line is given by:

image.png

  • where P = power transferred per phase

  • Vs = sending-end phase voltage

  • Vr = receiving-end phase voltage

  • X = transfer reactance per phase

  • δ = phase angle between Vs and Vr.

Since the Line is lossless

image.png

Assuming the power generation to be constant,

image.png

For maximum power transfer:δ = 90º, so that as δ→∞

image.png

The above equation determines the position of the critical point on the curve of δ versus Vs, with the assumption that the receiving - end voltage remains constant.A similar result can be derived by assuming the sending - end voltage to be constant and treating Vr as a variable parameter when analyzing the system. In this scenario, the resulting equation is

image.png

The reactive power expression at the receiving-end bus may be written as

image.png

The above equation represents the steady - state voltage stability limit. It indicates that, at the steady - state stability limit, the reactive power approaches infinity. This implies that the derivative dQ/dVr becomes zero. Thus, the rotor angle stability limit under steady - state conditions coincides with the steady - state voltage stability limit. Additionally, the steady - state voltage stability is also influenced by the load.

Give a tip and encourage the author!

Recommended

Analysis of Lightning Protection Measures for Distribution Transformers
Analysis of Lightning Protection Measures for Distribution TransformersTo prevent lightning surge intrusion and ensure the safe operation of distribution transformers, this paper presents applicable lightning protection measures that can effectively enhance their lightning withstand capability.1. Lightning Protection Measures for Distribution Transformers1.1 Install surge arresters on the high-voltage (HV) side of the distribution transformer.According to SDJ7–79 Technical Code for Overvol
12/24/2025
Transformer Protection Settings: Zero-Sequence & Overvoltage Guide
1. Zero-Sequence Overcurrent ProtectionThe operating current for zero-sequence overcurrent protection of grounding transformers is typically determined based on the transformer's rated current and the maximum allowable zero-sequence current during system ground faults. The general setting range is approximately 0.1 to 0.3 times the rated current, with operating time usually set between 0.5 to 1 second to quickly clear ground faults.2.Overvoltage ProtectionOvervoltage protection is a critical com
12/17/2025
Electrical Protection: Grounding Transformers and Bus Charging
1. High-Resistance Grounding SystemHigh-resistance grounding can limit ground fault current and appropriately reduce ground overvoltage. However, there is no need to connect a large high-value resistor directly between the generator neutral point and ground. Instead, a small resistor can be used together with a grounding transformer. The primary winding of the grounding transformer is connected between the neutral point and ground, while the secondary winding is connected to a small resistor. Ac
12/17/2025
Classification of Equipment Defects for Relay Protection and Safety Automatic Devices in Substations
In daily operations, various equipment defects are inevitably encountered. Whether maintenance personnel, operation and maintenance staff, or specialized management personnel, all must understand the defect classification system and adopt appropriate measures according to different situations.According to Q/GDW 11024-2013 "Operation and Management Guide for Relay Protection and Safety Automatic Devices in Smart Substations," equipment defects are classified into three levels based on severity an
12/15/2025
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.