• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Key Design Considerations for Enhancing Power Transformer Reliability

Vziman
Field: Manufacturing
China

Power transformers are critical components within the power grid. Once quality issues occur, they may not only result in significant economic and property losses but also endanger lives and cause immeasurable negative social impacts.

Generally, the reliability of a power transformer is primarily influenced by its design, technology, materials, and manufacturing standards. Among these, design—being the foundation of product quality—plays a crucial role in determining the overall reliability of power transformers.

Statistics indicate that "design defects" are the primary cause of major quality incidents historically experienced by the industry, accounting for over 80% of such events. Therefore, the reliability of transformer design is both a prerequisite and a fundamental guarantee for achieving overall product reliability. This article discusses several key aspects of transformer reliability design.

Short-Circuit Withstand Capability Design Principle

Short-circuit withstand capability is a key indicator of power transformer reliability. Damage due to insufficient short-circuit strength is not uncommon in power systems, and failures during random short-circuit tests are also frequently reported.

As a special test, only a very small proportion of power transformers—less than 1% of total production—undergo actual short-circuit testing. Hence, design validation remains the most practical approach to ensure adequate short-circuit withstand capability.

The fundamental principle of short-circuit design should focus on minimizing the actual short-circuit stress as much as possible, rather than blindly increasing the allowable stress limits. The latter approach overly depends on material properties and manufacturing processes and represents an uncontrollable design strategy.

Design Considerations for Hot Spot Temperature Rise

The hot spot temperature rise in various components of a power transformer is closely linked to its service life and directly affects long-term operational reliability. As a type test, temperature rise testing is not performed on every unit. Thus, design analysis and verification remain essential to ensure that hot spot temperature rises across all components remain within safe limits.

Transformer hot spot temperature rise design should focus on three critical areas: winding hot spots, core hot spots, and hot spots in metallic structural parts. Accurate calculation of leakage magnetic field distribution and loss density, based on product structure and parameters, provides a vital foundation for the rational selection of component materials, effective implementation of stray flux control measures, and optimized cooling oil circuit design—ensuring that all component hot spot temperature rises remain within safe values.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.