• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Can the efficiency or capacity of existing electrical power transformers be increased using devices or techniques?

Encyclopedia
Field: Encyclopedia
0
China

Ways to increase efficiency

Optimize core material and structure

  • High performance core materials are used:New core materials, such as amorphous alloys, are used. The amorphous alloy has excellent magnetic properties, and its hysteresis loss and eddy current loss are very low. Compared with the traditional silicon steel sheet core, the no-load loss of the amorphous alloy core transformer can be reduced by 70-80%. For example, an amorphous alloy iron core transformer with the same capacity can significantly reduce the waste of electrical energy and improve the energy utilization rate during long-term operation compared with a silicon steel sheet iron core transformer.

  • Improved core structure design:Optimize the lamination of the core, such as the lamination structure with stepped joints. This structure can reduce the magnetic circuit distortion in the core, reduce the magnetic resistance, and thus reduce the hysteresis loss. At the same time, by precisely controlling the manufacturing process of the iron core, ensuring the tightness of the iron core and reducing the air gap also helps to improve the efficiency of the transformer.

Improve winding material and winding process

  • High conductivity winding material is used:High purity copper or aluminum is used as the winding material, and advanced manufacturing processes are used to improve the conductivity of the material. For example, the use of oxygen-free copper as a winding material has a higher conductivity than ordinary copper, which can reduce the resistance loss in the winding. In the large capacity transformer, the winding resistance loss accounts for a large proportion of the total loss, and reducing the winding resistance loss has a significant effect on improving the transformer efficiency.

  • Optimize winding process:Improve the winding method, such as using transposition winding technology. In the case of multiple wires being wound simultaneously, transposition winding allows each wire to withstand current evenly at different positions in the winding, reducing additional losses due to skin effects and proximity effects. For example, in the high voltage winding of large power transformer, the transposition winding technology can effectively reduce the eddy current loss of the winding and improve the operation efficiency of the transformer.

Improved cooling system

  • Improved cooling efficiency:Upgrade the transformer cooling system, such as from natural air cooling to forced air cooling or oil immersed self-cooling to forced oil circulation air cooling. Forced air cooling can increase the flow rate of air through the fan and improve the heat dissipation efficiency; Forced oil circulation air cooling uses oil pumps to make transformer oil circulate quickly in the radiator, taking away more heat. Through a more effective cooling method, the working temperature of the transformer can be reduced, and problems such as increased resistance and aging of insulation caused by increased temperature can be reduced, thus improving the efficiency of the transformer.

  • Optimize cooling system controlIntelligent cooling system control technology is used to automatically adjust the operation of the cooling equipment according to the load and temperature of the transformer. For example, when the transformer load is light and the temperature is low, the power of the cooling equipment is automatically reduced or part of the cooling equipment is stopped; When the load increases and the temperature rises, more cooling equipment is started in time. This intelligent control can not only ensure the normal operation of the transformer, but also reduce the energy consumption of the cooling system and indirectly improve the overall efficiency of the transformer.

Ways to increase capacity

  • Modified winding:Increase winding turns or wire cross-sectional area  If the size of the transformer core allows, the number of turns of the winding or the cross-sectional area of the winding wire can be appropriately increased. Increasing the number of turns can improve the voltage ratio of the transformer, and increasing the cross-sectional area of the wire can reduce the resistance of the winding, allowing greater current to pass through. For example, for a step-down transformer, if the number of turns of the low-voltage winding and the cross-sectional area of the wire are reasonably increased on the basis of the original, the capacity of the transformer can be improved on the basis of ensuring other performance.

  • Multi-strand parallel winding is used:The winding is made by winding multiple wires in parallel. In this way, the current carrying capacity of the winding can be increased, thus increasing the capacity of the transformer. At the same time, the multi-stranded parallel winding can also improve the heat dissipation performance of the winding to a certain extent, which is conducive to the stable operation of the transformer under high capacity.

Optimized insulation system

  • Use high performance insulation materials:The use of new insulating materials, such as high-performance insulating paper, insulating paint and so on. These new materials have higher insulation strength and heat resistance, allowing higher voltages and currents to pass through without increasing the volume of the transformer. For example, the use of new nano-composite insulation materials can withstand higher electric field strength at the same insulation distance, which provides the possibility to increase the capacity of transformers.

  • Use high performance insulation materials:Optimize the insulation structure of the transformer, such as reducing the air gap in the insulation layer and adopting a more compact insulation layout. Good insulation structure can improve the insulation performance of the transformer, so that the transformer can withstand higher voltage and greater current, thereby improving the capacity of the transformer.

Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
What’s the Difference Between Rectifier Transformers and Power Transformers?
What is a Rectifier Transformer?"Power conversion" is a general term encompassing rectification, inversion, and frequency conversion, with rectification being the most widely used among them. Rectifier equipment converts input AC power into DC output through rectification and filtering. A rectifier transformer serves as the power supply transformer for such rectifier equipment. In industrial applications, most DC power supplies are obtained by combining a rectifier transformer with rectifier equ
01/29/2026
How to Judge, Detect and Troubleshoot Transformer Core Faults
1. Hazards, Causes, and Types of Multi-Point Grounding Faults in Transformer Cores1.1 Hazards of Multi-Point Grounding Faults in the CoreUnder normal operation, a transformer core must be grounded at only one point. During operation, alternating magnetic fields surround the windings. Due to electromagnetic induction, parasitic capacitances exist between the high-voltage and low-voltage windings, between the low-voltage winding and the core, and between the core and the tank. The energized windin
01/27/2026
A Brief Discussion on the Selection of Grounding Transformers in Boost Stations
A Brief Discussion on the Selection of Grounding Transformers in Boost StationsThe grounding transformer, commonly referred to as "grounding transformer," operates under the condition of being no-load during normal grid operation and overloaded during short-circuit faults. According to the difference in filling medium, common types can be divided into oil-immersed and dry-type; according to phase number, they can be classified into three-phase and single-phase grounding transformers. The groundi
01/27/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.