Synchronous Impedance Method

05/26/2025

The Synchronous Impedance Method, also known as the EMF Method, replaces the impact of armature reaction with an equivalent imaginary reactance. To calculate voltage regulation using this method, the following data are required: armature resistance per phase, the Open-Circuit Characteristic (OCC) curve depicting the relationship between open-circuit voltage and field current, and the Short-Circuit Characteristic (SCC) curve showing the relationship between short-circuit current and field current.

For a synchronous generator following are the equation given below:

To calculate the synchronous impedance Zs, measurements are taken, and the value of Ea (armature-induced EMF) is derived. Using Ea and V (terminal voltage), voltage regulation is then computed.
Measurement of Synchronous Impedance
Synchronous impedance is determined through three primary tests:
  • DC Resistance Test
  • Open Circuit Test
  • Short Circuit Test
DC Resistance Test
In this test, the alternator is assumed to be star-connected with its DC field winding open-circuited, as depicted in the circuit diagram below:
DC Resistance Test
The DC resistance between each pair of terminals is measured using either the ammeter-voltmeter method or Wheatstone’s bridge. The average of three measured resistance values Rt is calculated, and the per-phase DC resistance RDC is derived by dividing Rt by 2. Considering the skin effect, which increases the effective AC resistance, the per-phase AC resistance RAC is obtained by multiplying RDC by a factor of 1.20–1.75 (typical value: 1.25), depending on the machine size.
Open Circuit Test
To determine synchronous impedance via the open-circuit test, the alternator operates at rated synchronous speed with load terminals open (loads disconnected) and field current initially set to zero. The corresponding circuit diagram is shown below:
Open Circuit Test (Continued)
After setting the field current to zero, it is gradually increased in steps while measuring the terminal voltage Et at each increment. The excitation current is typically raised until the terminal voltage reaches 125% of the rated value. A graph is plotted between the open-circuit phase voltage Ep = Et/sqrt 3 and the field current If, yielding the Open Circuit Characteristic (O.C.C) curve. This curve mirrors the shape of a standard magnetization curve, with its linear region extended to form an air gap line.
The O.C.C and air gap line are illustrated in the figure below:
Short Circuit Test
In the short circuit test, the armature terminals are shorted via three ammeters, as illustrated in the figure below:
Short Circuit Test (Continued)
Before starting the alternator, the field current is reduced to zero, and each ammeter is set to a range exceeding the rated full-load current. The alternator is operated at synchronous speed, with the field current increased in gradual steps—similar to the open-circuit test—while measuring the armature current at each increment. The field current is adjusted until the armature current reaches 150% of the rated value.
For each step, the field current If and the average of three ammeter readings (armature current Ia) are recorded. A graph plotting Ia against If yields the Short Circuit Characteristic (S.C.C), which typically forms a straight line, as shown in the figure below.
Calculation of Synchronous Impedance
To calculate the synchronous impedance Zs, first overlay the Open-Circuit Characteristic (OCC) and Short-Circuit Characteristic (SCC) on the same graph. Next, determine the short-circuit current ISC corresponding to the rated alternator voltage per phase Erated. The synchronous impedance is then derived as the ratio of the open-circuit voltage EOC (at the field current that yields Erated to the corresponding short-circuit current ISC, expressed as s = EOC / ISC.
The graph is shown below:
From the above figure, consider the field current If = OA, which produces the rated alternator voltage per phase. Corresponding to this field current, the open-circuit voltage is represented by AB.
Assumptions of the Synchronous Impedance Method
The synchronous impedance method assumes that synchronous impedance  (determined from the ratio of open-circuit voltage to short-circuit current via OCC and SCC curves) remains constant when these characteristics are linear. It further assumes that flux under test conditions matches that under load, though this introduces error as short-circuited armature current lags voltage by ~90°, causing predominantly demagnetizing armature reaction. Armature reaction effects are modeled as a voltage drop proportional to armature current, combined with reactance voltage drop, with magnetic reluctance assumed constant (valid for cylindrical rotors due to uniform air gaps). At low excitations,  is constant (linear/unsaturated impedance), but saturation reduces  beyond the OCC's linear region (saturated impedance). This method yields higher voltage regulation than actual loading, earning it the term pessimistic method.

Wenzhou Rockwell Transformer Co., Ltd. It is a high - tech enterprise integrating R & D, production, sales, and service. It focuses on the manufacturing of power transformers and supporting equipment, and is committed to providing efficient, reliable, and energy - saving power transmission and distribution solutions for global customers. We can offer: •Distribution transformers and substations •Outdoor switchgears and breakers(recloser) •Switchgears and it’s components (GIS, RMU, VCB, SF6 CB) Market and Service: We always take customers as the orientation and provide customized services according to their requirements. Our products are exported to the Middle East, Africa, Northern Europe, South America, and many other countries and regions. Drive the future of electricity with technological innovation and become a leading global supplier of intelligent power equipment.

Fault Analysis and Treatment of Oil-Immersed Transformers
Fault Analysis and Treatment of Oil-Immersed Transformers
Oil Leakage at Welded JointsOil leakage at welded joints primarily stems from poor welding quality, such as incomplete or detached welds, and defects like pinholes and gas pores. Although oil-immersed transformers are initially coated with solder and paint during manufacturing, potentially masking these issues temporarily, the defects tend to surface during operation. Additionally, electromagnetic vibration can cause weld cracks, leading to oil leakage.To resolve such leaks, the first critical s
08/29/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Transformer Detection, Testing, Maintenance and Servicing
Transformer Detection, Testing, Maintenance and Servicing
Transformer testing, inspection, and maintenance are essential tasks to ensure normal operation and extend the service life of transformers. Below are some recommended steps:Visual Inspection: Regularly inspect the transformer's exterior, including the enclosure, cooling system, and oil tank. Ensure the enclosure is intact, free from corrosion, damage, or leakage.Insulation Resistance Testing: Use an insulation resistance tester to check the transformer's insulation system. Verify that the insul
Vziman
08/29/2025
Preventive Detection and Testing of Transformers
Preventive Detection and Testing of Transformers
I. DC Resistance Test of Transformer Primary and Secondary Windings:The DC resistance of transformer primary and secondary windings can be measured using the four-wire (Kelvin) method, which is based on principles related to accurate resistance measurement.In the four-wire method, two test leads are connected to both ends of the winding under test, while the other two leads are connected to adjacent winding terminals. An AC power source is then applied to the two leads connected to the adjacent
Rockwell
08/28/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!