Electrical Transmission Tower Earthing

Encyclopedia
09/09/2024

Earthing Definition


Earthing of electrical transmission towers is defined as a safety measure where each tower is grounded to prevent electrical hazards.


Footing Resistance


Measuring the footing resistance ensures it is below 10 ohms, crucial for tower safety.


Pipe Earthing


In the pipe earthing system, we use a galvanized steel pipe that is 25 mm in diameter and 3 meters long. The pipe is buried vertically in the soil, with its top 1 meter below ground level. If the tower stands on rock, the earthing pipe must be buried in damp soil near the tower.

The tower leg is then connected to the pipe using galvanized steel tape of an appropriate cross-section. The steel tape must be buried in a groove cut into the rock and protected from damage.


In case of pipe earthing system we fill surroundings of the pipe with alternating layers of charcoal and salt, which maintain the surrounding soil of the pipe moist. A details pictorial representation of a pipe earthing is down here below.



4634f5154f05c0486cecb6cc86316e20.jpeg


Counterpoise Earthing


We use 10.97 mm dia galvanized wire for the purpose of counterpoise earthing of electrical transmission tower. Here we connect the galvanized wire with the leg of the tower with the help of galvanized lug and the galvanized lug is fitted with a tower leg with the help of 16 mm dia nut and bolts. The steel wire used for the purpose must be of minimum 25 meters in length. The wire is buried tangentially under the ground of minimum 1 meter depth from the ground level. Here four legs of a tower are connected together with counterpoise earth wire burried below the ground level of 1 meter depth as already been told.


Tower Earthing Lug


The earthing lug extends beyond the tower’s concrete base, ensuring a proper connection.

 

 


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!