• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Free Expert Guides on Power Systems, Circuit Design & Electrical Troubleshooting

Access free engineering resources from IEE Business—covering power design, circuit layout, equipment selection, and troubleshooting. Expert-developed guides help engineers, procurement, and project teams make better decisions. Stay ahead on smart grids, renewables, efficiency, and AI tools. Improve reliability, reduce downtime, and enhance outcomes with real-world solutions. Explore our knowledge hub today.
How to Qualify Low-Voltage Pole-Mounted Circuit Breakers: Personal Testing Checklist
Alright, folks, Oliver Watts here. Been poking, prodding, and testing these pole-mounted breakers for about eight years now, mostly out in the field but also in the lab. Seen a fair share of good ones, bad ones, and... well, let's just say "interesting" ones. So, when we're talking about signing off on a qualified low-voltage pole-mounted circuit breaker – you know, one that's actually gonna do its job when the sh*t hits the fan out there on the line – it ain't just a quick v
08/21/2025
Consult
Tip
Consult
Tip
Inverter Optimization for High-Precision Test Benches
In modern industrial applications, inverters play a crucial role as key components of electrical drive systems. They enable precise speed control and effectively reduce energy consumption, thereby enhancing the overall efficiency and reliability of the system. This article focuses on the performance evaluation and optimization of inverters in test bench design.As experimental platforms that simulate real-world operating conditions, test benches impose higher performance demands on inverters. The
08/18/2025
Consult
Tip
Consult
Tip
Essential Type, Routine, and Site Acceptance Tests for Modern Eco-Friendly RMUs
1. Type Test System and StandardsType testing verifies the design rationality and safety of eco-friendly insulated ring main units (RMUs), based on IEC 62271-200 and GB/T 3906, and includes: Insulation Performance: For 12kV RMUs, power frequency withstand voltage is 42kV (1 min) for main circuits and 48kV for breakers. Lightning impulse withstand is 75kV (12kV system) or 125kV (24kV system), with 15 standard impulses (1.2/50μs) per polarity. Partial discharge must be ≤10pC at 1.2&a
08/13/2025
Consult
Tip
Consult
Tip
Medium-Voltage Solid-Insulated RMUs: Epoxy Resin Insulation and Structural Design Explained
1 Insulation Materials and DesignBased on cost statistics for medium-voltage solid-insulated ring main units (RMUs), the insulation structure accounts for over 40% of the total cost. Therefore, selecting appropriate insulation materials, designing rational insulation structures, and determining the correct insulation method are crucial to the value of medium-voltage RMUs. Since the first synthesis of epoxy resin in 1930, various additives have been continuously explored to improve its properties
08/12/2025
Consult
Tip
Consult
Tip
Live Partial Discharge Testing for RMUs: Methods, Issues, and Solutions
1 Live Testing AnalysisDetection of Issues through Live TestingIn October of a certain year, during live partial discharge (PD) testing on 10kV ring main units (RMUs) under our jurisdiction, the maintenance and testing team observed significantly elevated signal amplitudes in several units (Transient Earth Voltage (TEV) readings around 18 dB, and ultrasonic readings around 20 dB). Most of these units were from the same manufacturer. Consequently, a unified test was conducted on 15 RMUs from this
08/09/2025
Consult
Tip
Consult
Tip
Induced Voltage Test Issues and Solutions for HKSSPZ-6300/110 Arc Furnace Transformer
A HKSSPZ-6300/110 electric arc furnace transformer has the following basic parameters:Rated capacity S = 6300 kVA, primary voltage U₁ = 110 kV, secondary voltage U₂ = 110–160 V, vector group YNd11, with both low-voltage winding ends (start and finish) brought out, and equipped with 13-step on-load tap changing. Insulation levels: HV/HV neutral/LV, LI480AC200 / LI325AC140 / AC5.The transformer uses a dual-core series voltage regulation design, with an "8"-shaped low-voltage winding conf
08/06/2025
Consult
Tip
Consult
Tip
Performance Degradation Characteristics and Life Prediction of Power Capacitors Under High-Temperature Conditions
Performance Degradation Characteristics and Life Prediction of Power Capacitors under High-Temperature ConditionsWith the continuous expansion of power systems and increasing load demands, the operating environment for electrical equipment has become increasingly complex. Rising ambient temperature has emerged as a key factor affecting the reliable operation of power capacitors. As critical components in power transmission and distribution systems, the performance degradation of power capacitors
08/05/2025
Consult
Tip
Consult
Tip
Surge Arrester Handover & Live Testing Technologies for Reliable Power Grid Operation
1. Overview of Surge Arrester Handover Test Technology1.1 Necessity of Handover TestThe handover test is a crucial step in ensuring the performance and safe operation of surge arresters within power systems. For power systems with voltage levels at 220 kV and below, surge arresters play a core role in protecting electrical equipment from damage caused by overvoltages and lightning strikes. However, during the process from the arrester leaving the factory to its actual operation after installatio
07/31/2025
Consult
Tip
Consult
Tip
Advanced Online Monitoring System for Zinc Oxide Surge Arresters: Key Technologies and Fault Diagnosis
1 Architecture of the Online Monitoring System for Zinc Oxide Surge ArrestersThe online monitoring system for zinc oxide surge arresters comprises three layers: the station control layer, bay layer, and process layer. Station Control Layer: Includes a monitoring center, a Global Positioning System (GPS) clock, and a B - code clock source. Bay Layer: Consists of online monitoring Intelligent Electronic Devices (IEDs). Process Layer: Features monitoring terminals for Potential Transformers (PTs) a
07/30/2025
Consult
Tip
Consult
Tip
Advancements in Electromagnetic Induction-Based Cable Eccentricity Measurement: Overcoming Jitter and Enhancing Precision
A core challenge in online cable eccentricity measurement is the cable’s high - speed motion. This requires non - contact measurement equipment that can handle cable jitter. X - ray cable eccentricimeters, based on optical transmission imaging, measure multi - layer contour dimensions to calculate the geometric center of conductors relative to insulation eccentricity. However, they have drawbacks: slow measurement speed (only a few times per second), increased errors from cable jitter,
07/29/2025
Consult
Tip
Consult
Tip
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.