I nádúrach trífhásach leis an gcóras insilte, is féidir le transformadóir ghearradh cur ar fáil pointe neodrach réamhscoite, is féidir é a ghearradh go láidir nó trí reacaitheoirí/coileanna gearradh. Is minic a bhíonn an ceangal ZNyn11 ann, áit a d'imearthaíonn fórsaí magneachtacha seicheamh na neamhord ina ndiogha chéim/chuid de mhúr an chnámha, ag comhdhéanamh cúrsaí córas i ndiogha chéim agus ag éagóid fórsaí leachta/seicheamh na neamhord.
Tá sé tábhachtach an seicheamh na neamhord: é atá tar éis mionsonraíú meastachán an chúrsa córas agus an réamhshuim idir phásáin agus talamh i gcórais ghearradh seicheamh.
1. Tréithe Transformadóir Ghearradh Ceangailte ZN
Cé go bhféadfaí transformadóir YNd11 a úsáid, is tofanaí ZNyn11 (Fig. 1). Príomh-ealaíontais:
Le lathair do thuarálacha talún aon phhasáin, is féidir le rogha seicheamh ghearradh an cúrsa córas a chur isteach sna pasáin phríomh-transformadóir.

2. Anailís Seicheamh na Neamhord ar Transformadóirí Ghearradh Ceangailte ZN
Tá na príomhparaiméad teicniúla modail anailíse an transformadóir ghearradh léirithe sa Tábla 1, ag iarraidh go mbeadh an meastachán ceadaithe ar an seicheamh na neamhord laistigh de ±7.5%.

2.1 Ríomh Seicheamh na Neamhord trí Fhormla Empírici Shintiúil
Mar atá léirithe in Figiúr 2 (ceangal diogha chéim an transformadóir ghearradh), is é an seicheamh na neamhord an ciontachán idir an drochaint in aon phasáin agus an cúrsa córas nuair a rith an cúrsa córas trí gach trí phasáin cothrom. Le haghaidh ríomh, leanann X0 prionsabal an seicheamh ar transformadóirí cumhacht dhá-dhiogha chéim ghinearálta (Cothrom 1).

Sa fhoirmle, tá W mar líon na ndiogha chéim. Dó transformadóir ZN, is é W an líon na ndiogha chéim an chéim dhá-leath; ∑aR léireann an spás leachta choibhneasta. Dó transformadóir ZN, is é an spás leachta choibhneasta dá chéim dhá-leath; ρ is an chigiarr Rogowski; H is airde an reacsa diogha chéim.

Ag iontráil na sonraí sa Tábla 1 isteach sa Chothrom (1), tá an seicheamh na neamhord a ríomh 70.6 Ω.
2.2 Anailís Seicheamh na Neamhord trí Bhogearraí Eilectromaigíní
Úsáideadh bogearraí eilectromaigíní Magnet ó Infolytica don anailís réimsí magneachtacha. Rinneadh modail símplí 3D bunaithe ar charachtar struchtúrach an tairge, mar atá léirithe in Figiúr 3. Úsáideann an bhuilleagar algoritam réimsí potinsial T-Ω le heilimintí sliseálacha ag úsáid polainmíolaí cheo ó 1ú go 3ú ord.

Is modh ríomh uimhirthe é anailís eiliminte éigin (FEA) bunaithe ar phrionsabal an athraithe agus íoslódú interpoolú. D'athraíonn sé an fadhb tuairimí i gcorr le fadhb variational (seachas fadhb meastacháin funtion), ansin deichníonn sé an fadhb variational i bhfadhb meastacháin funtion coitianta trí íoslódú interpoolú, go dtí go mbíonn sé ar fáil mar chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de chuid de ch......