What is the reason behind transmission lines being single stranded and not twisted around each other at high voltages?

Encyclopedia
10/05/2024

Why are high voltage transmission lines mostly single strand and not twisted


The design and material selection of high-voltage transmission lines are based on a variety of factors, including safety, efficiency, construction difficulty and cost-effectiveness. Here are some explanations for why high-voltage transmission lines are mostly single-stranded and not twisted:


Safety and reliability


High voltage transmission lines usually carry high voltage, which has extremely high requirements for safety and reliability. The single strand structure can provide better mechanical strength and tensile properties in some cases, reducing the additional stress concentration points that may be caused by stranding, thereby improving the overall stability of the line. In addition, when the single strand structure is damaged by external forces, such as wind blowing or animal biting, it is less likely to cause the line to break, increasing the safety of the line.


Heat dissipation performance


High voltage transmission lines generate heat during operation, especially when large currents pass through. The single strand wire has a larger heat dissipation area due to its thicker diameter, which helps to dissipate heat faster and avoid problems caused by overheating. This is especially important for high-voltage lines, where high temperatures can negatively affect the performance of conductor materials.


Construction convenience


Single strand is relatively easier to operate in the construction process, especially in the links such as threading, and will not increase the difficulty of construction because of the gap between the strands as the multi-strand. For large-scale high-voltage transmission line construction, simplifying the construction process can improve efficiency and reduce costs.


Economy


While multi-strand may require more complex processes in the production process, resulting in higher costs, single-strand strand usually has a lower price due to its simple design and manufacturing process. In the case of a limited budget, choosing a single strand can save costs.


Technical requirement


The design of high voltage transmission lines needs to consider a variety of technical parameters, including voltage level, current capacity, environmental conditions and so on. Under these conditions, single-stranded wires may offer more suitable electrical properties and mechanical adaptability, making them ideal for high-voltage transmission.


Conclusion


In summary, the high-voltage transmission lines are mostly single strands and do not intertwine, mainly to ensure the safety, reliability, heat dissipation performance, construction convenience and economy of the line. These factors together determine the design and material selection of high-voltage transmission lines.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!