• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Polarity Test of a Transformer – Circuit Diagram and Working

Edwiin
Edwiin
Field: Power switch
China

Polarity in Two-Winding Transformers

In two-winding transformers, one terminal of a winding is always positive relative to the other at any instant. Transformer polarity refers to the relative direction of induced voltages between the high-voltage (HV) and low-voltage (LV) windings. In practical transformers, winding terminals are brought out as leads, and polarity defines how these leads are connected and labeled.

Significance of Transformer Polarity

Understanding polarity is critical for several operational and engineering tasks:

  • Instrument Transformer Connection (CTs and PTs):Proper polarity ensures accurate measurement of current and voltage in power systems.

  • Protective Relay Coordination:Correct polarity is essential for relays to detect faults and operate reliably.

  • Three-Phase Transformer Construction:Polarity determines how single-phase windings are interconnected to form three-phase configurations (e.g., delta or wye).

  • Parallel Operation of Transformers:Transformers in parallel must have identical polarity to avoid circulating currents and magnetic flux cancellation.

Terminal Markings and Polarity Identification

Instead of using traditional dot markings, it is often clearer to use H1/H2 for primary (HV) windings and X1/X2 for secondary (LV) windings to denote polarity:

  • H1 and H2: Markers for the primary winding terminals, indicating the start and end of the HV winding.

  • X1 and X2: Corresponding markers for the secondary winding terminals (LV side).

During polarity testing, these labels help identify:

  • The instantaneous voltage relationship between HV and LV windings (e.g., H1 and X1 are "in-phase" if polarity is additive).

  • Whether the transformer has additive (series-aiding) or subtractive (series-opposing) polarity, which impacts how windings are connected in circuits.

Key Consideration

Incorrect polarity can lead to:

  • Faulty measurements in instrument transformers.

  • Malfunctioning protective relays.

  • Excessive circulating currents or overheating in parallel-connected transformers.

By standardizing on clear terminal markings (H1/H2 and X1/X2), engineers and technicians can ensure proper transformer polarity, enhancing the safety, reliability, and efficiency of power systems.

Transformer Polarity
The dot convention (or dot notation) is a standard method used to denote the polarity of windings in a transformer.

Transformer Polarity and Dot Convention

In Figure A, two dots are placed on the same side of the primary and secondary windings. This indicates that the current entering the dotted terminal of the primary winding has the same direction as the current leaving the dotted terminal of the secondary winding. Consequently, the voltages at the dotted ends are in phase—if the voltage at the dotted point of the primary is positive, the voltage at the dotted point of the secondary will also be positive.

 

In Figure B, the dots are positioned on opposite sides of the windings, signifying that the windings are wound in opposite directions around the core. Here, the voltages at the dotted points are out of phase: a positive voltage at the primary’s dotted terminal corresponds to a negative voltage at the secondary’s dotted terminal.

Additive vs. Subtractive Polarity

Transformer polarity can be classified as additive or subtractive. To determine which type applies, connect one terminal of the primary winding to one terminal of the secondary winding and attach a voltmeter across the remaining terminals of both windings.

Additive Polarity

  • Voltmeter Reading: Measures the sum of the primary voltage VA and secondary voltage VB, denoted as VC.

  • Formula: VC = VA + VB.

  • Winding Configuration: The windings are oriented such that their magnetic fluxes oppose each other when currents flow into the dotted terminals.

The circuit diagram of additive polarity is shown in the figure below.

Subtractive Polarity

In subtractive polarity, the voltmeter measures the difference between the primary voltage and the secondary voltage. Denoted as VC, the voltmeter reading is expressed by the equation:

The circuit diagram of subtractive polarity is shown in the figure below.

 

 

Circuit Diagram of Polarity Test

The circuit diagram of the polarity test is shown in the figure below.

Polarity Testing of Transformers

The primary winding terminals are denoted as A1, A2, and the secondary winding terminals as a1, a2. As shown in the figure, a voltmeter VA is connected across the primary winding, VB across the secondary winding, and VC between the primary terminal A1 and secondary terminal a1.

An autotransformer is used to provide a variable AC supply to the primary winding. All voltmeter readings are recorded under this configuration:

  • If the voltmeter VC reads the sum of VA and VB, the transformer exhibits additive polarity.

  • If VC) reads the difference between VA and VB, the transformer exhibits subtractive polarity.

Polarity Test Using a DC Source (Battery)

The AC voltage method described above can be impractical for determining the relative polarity of two-winding transformers. A more convenient approach uses a DC source (battery), a switch, and a DC permanent-magnet voltmeter. The connection diagram for this method—including the correct battery polarity—is shown in the figure below.

A switch is connected in series with the primary winding. When the switch is closed, the battery is connected to the primary winding, allowing current to flow through it. This generates flux linkage in both windings, inducing electromotive force (EMF) in both the primary and secondary windings.

The induced EMF in the primary winding has a positive polarity at the end connected to the battery's positive terminal. To determine the secondary winding's polarity:

  • If the DC voltmeter connected across the secondary winding shows a positive reading at the moment the switch is closed, the secondary terminal connected to the voltmeter's positive probe has the same polarity as the primary's positive terminal (i.e., the dotted terminals are correctly identified).

  • If the voltmeter deflects to the negative side, the secondary terminal connected to the voltmeter's positive probe has opposite polarity to the primary's positive terminal.

Give a tip and encourage the author!
Recommended
Rectifier Transformer: Working Principle & Applications
Rectifier Transformer: Working Principle & Applications
1.Rectifier Transformer: Principle and OverviewA rectifier transformer is a specialized transformer designed to supply rectifier systems. Its working principle is the same as that of a conventional transformer — it operates based on electromagnetic induction and is used to transform alternating voltage. A typical transformer has two electrically isolated windings — primary and secondary — wound around a common iron core.When the primary winding is connected to an AC power source, alternating cur
Echo
10/25/2025
What Are Combined Transformer Standards? Key Specs & Tests
What Are Combined Transformer Standards? Key Specs & Tests
Combined Instrument Transformers: Technical Requirements and Testing Standards Explained with DataA combined instrument transformer integrates a voltage transformer (VT) and a current transformer (CT) into a single unit. Its design and performance are governed by comprehensive standards covering technical specifications, testing procedures, and operational reliability.1. Technical RequirementsRated Voltage:The primary rated voltages include 3kV, 6kV, 10kV, and 35kV, among others. The secondary v
Edwiin
10/23/2025
Why Upgrade to Maintenance-Free Transformer Breathers?
Why Upgrade to Maintenance-Free Transformer Breathers?
Maintenance-Free Moisture Absorption Technology for Oil-Immersed TransformersIn traditional oil-filled transformers, the temperature control system causes thermal expansion and contraction of insulating oil, requiring the sealing gel chamber to absorb significant moisture from the air above the oil surface. The frequency of manual silica gel replacement during patrols directly impacts equipment safety—delayed replacement can easily lead to oil degradation. Maintenance-free moisture absorbers rev
Felix Spark
10/23/2025
What Is an MVDC Transformer? Key Applications & Benefits Explained
What Is an MVDC Transformer? Key Applications & Benefits Explained
Medium-voltage DC (MVDC) transformers have a wide range of applications in modern industry and power systems. The following are some key application areas for MVDC transformers: Power Systems: MVDC transformers are commonly used in high-voltage direct current (HVDC) transmission systems to convert high-voltage AC into medium-voltage DC, enabling efficient long-distance power transmission. They also contribute to grid stability control and power quality improvement. Industrial Applications: In in
Edwiin
10/23/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.