DC Generators Performance Curves

Encyclopedia
08/20/2024

Performance Curves Definition

Performance curves of a DC generator are graphs that show how the output voltage changes as the load current varies from no load to full load. These are also known as characteristic curves. These curves help us understand the voltage regulation of different types of DC generators. Better performance is indicated by lower voltage regulation.

Separately Excited DC Generator

Though this type of DC generators are rarely used due to its cost for the separate excitation but the performance of these DC generators are quite satisfactory. In separately excited DC generators, the terminal voltage as the load increases and the load current started to flow.

There is slight drop in the terminal voltage due to armature reaction and IR drop but these drop can be eliminated by increasing field excitation and then we can get constant terminal voltage. In the diagram below, the curve AB is showing this characteristic.

Series Wound DC Generator

In series DC generators, the terminal voltage at no load is zero because no current flows through the field winding. As the load increases, the output voltage rises. The terminal voltage varies widely with small changes in load current. Due to armature reaction and ohmic drop in the armature winding, the output voltage is lower than the generated voltage.

Shunt Wound DC Generator

In shunt wound DC generators, there is always some voltage at no load due to the shunt field winding. As the load increases, the terminal voltage drops quickly because of strong demagnetizing armature reaction and resistance drop. This drastic reduction in terminal voltage leads to a decrease in load current, resulting in poor performance of this type of generators.

Compound Wound DC Generator

At no load, the performance curve of this type of DC generator is same as that of shunt field generators because at no load, there is no current in the series field winding. When the load increases, then the terminal voltage drops due to the shunt DC generator, but the voltage rise in the series DC generator compensates the voltage drop. For these reason the terminal voltage remains constant. The terminal voltage can also make higher or lower by controlling the amp-turns of the series field winding. In the diagram below, the curve FG is showing this characteristic.

a08420d0433e6d6f7a185f2e38d71b7d.jpeg


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Abnormal Operating Condition and Causes of Induction Motors
Abnormal Operating Condition and Causes of Induction Motors
Abnormal Operating Conditions and Causes of Induction MotorsThree-phase induction motors are widely used in industrial applications. Their abnormal operating conditions and causes can be summarized as follows:Abnormal Operating Conditions and Causes of Induction MotorsThe following are the abnormal operating conditions and causes of induction motors:Mechanical OverloadBlockage in Pump/Gear Systems: Obstruction in mechanical systems (e.g., pumps or gears) connected to the motor.Damaged Bearings o
Edwiin
05/19/2025
Polarity Test of a Transformer – Circuit Diagram and Working
Polarity Test of a Transformer – Circuit Diagram and Working
Polarity in Two-Winding TransformersIn two-winding transformers, one terminal of a winding is always positive relative to the other at any instant. Transformer polarity refers to therelative direction of induced voltagesbetween the high-voltage (HV) and low-voltage (LV) windings. In practical transformers, winding terminals are brought out as leads, and polarity defines how these leads are connected and labeled.Significance of Transformer PolarityUnderstanding polarity is critical for several op
Edwiin
05/15/2025
Capacitor Start Induction Motor
Capacitor Start Induction Motor
Capacitor Start Motors are a type of single - phase induction motors. They utilize a capacitor within the auxiliary winding circuit to create a significant phase difference between the current flowing through the main winding and that in the auxiliary winding. As the name "capacitor start" clearly implies, these motors rely on a capacitor specifically for the starting process. The diagram below illustrates the connection schematic of a Capacitor Start Motor.The capacitor start motor features a c
Encyclopedia
05/09/2025
 Thermal Power Plant – Components, Working and Site Selection
Thermal Power Plant – Components, Working and Site Selection
What is a Thermal Power Plant?The law of energy conservation states that energy cannot be created or destroyed; rather, it can only be transformed from one form to another. Electrical energy, in particular, can be harnessed from a variety of energy sources. Facilities designed to generate large - scale electrical energy are commonly referred to as power plants or power stations.A thermal power plant is a type of power generation facility that converts heat energy into electrical energy. Heat ene
Encyclopedia
05/07/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!