• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Loss evaluation in transformers based on IEC 60076

Dyson
Dyson
Field: Electrical Standards
China

I. Definitions of Losses in IEC 6007

IEC 60076-1 (General Requirements) and IEC 60076-7 (Loading Guidelines) specify two core types of losses:

No-load Loss (P0)

Definition: Losses measured when the primary winding is energized at rated voltage and the secondary winding is open-circuited (dominated by core losses).

Test Conditions

  • Measured at rated frequency and voltage (typically sinusoidal power frequency).

  • Corrected to reference temperature (75°C for oil-immersed transformers, 115°C for dry-type).

Load Loss (Pk)

Definition: Losses measured when the secondary winding is short-circuited and rated current flows through the primary winding (dominated by copper losses).

Test Conditions:

  • Measured at rated current and frequency.

  • Corrected to reference temperature (75°C for oil-immersed; varies for dry-type based on insulation class).

II. Testing and Calculation of Losses

No-load Loss Test (IEC 60076-1 Clause 10)

Method

  • Direct measurement using a power analyzer (instrument losses must be subtracted).

  • Test voltage: rated voltage ±5%, with the lowest value used.

Temperature Correction Formula:

Bref: Flux density at reference temperature; B test : Measured flux density.

2. Load Loss Test (IEC 60076-1 Clause 11)

Method:

  • Measured during short-circuit impedance testing.

  • Test current: rated current; frequency deviation ≤ ±5%.

Temperature Correction Formula (for copper windings)

Tref: Reference temperature (75°C); T test : Winding temperature during testing.

Key Parameters and Tolerances

Loss Tolerances (IEC 60076-1 Clause 4.2):

  • No-load loss: +15% allowed (measured value must not exceed guaranteed value).

  • Load loss: +15% allowed (measured value must not exceed guaranteed value).
    Stray Losses:

Losses caused by leakage flux in structural components, evaluated via high-frequency component separation or thermal imaging.

Energy Efficiency Classes and Loss Optimization

Per IEC 60076-14 (Energy Efficiency Guidelines for Power Transformers):

Total Losses (P total):

β: Load ratio (actual load / rated load).

Efficiency Classes (e.g., IE4, IE5) require total losses reduced by 10%~30%, achieved via:

  • High-permeability silicon steel (reduces no-load losses).

  • Optimized winding design (minimizes eddy current losses).

Practical Application Example

Case: 35kV Oil-Immersed Transformer (IEC 60076-7)

Rated Parameters:

  • Capacity: 10 MVA

  • Guaranteed no-load loss: 5 kW

  • Guaranteed load loss: 50 kW (at 75°C).

Test Data:

No-load loss: 5.2 kW (within +15% tolerance → 5.75 kW limit).

Load loss (tested at 30°C):

Conclusion: Load loss exceeds tolerance? Verify against 50 × 1.15 = 57.5 kW.

VI. Common Issues and Considerations

Ambient Temperature:

Tests must be conducted between -25°C to +40°C; corrections required outside this range.

Harmonic Losses:

Evaluate additional harmonic losses under non-sinusoidal loads per IEC 60076-18.

Digital Testing:

Use IEC 61869-calibrated sensors for accuracy.

Give a tip and encourage the author!
Recommended
 Latest Standards for Surge Arresters in Cable Auxiliary Equipment (2025)
Latest Standards for Surge Arresters in Cable Auxiliary Equipment (2025)
Standards for Surge Arresters Used in Cable Auxiliary Equipment GB/T 2900.12-2008 Electrotechnical Terminology – Surge Arresters, Low-Voltage Surge Protective Devices, and ComponentsThis standard defines specialized terminology for surge arresters, low-voltage surge protective devices, and their functional components. It is primarily intended for use in drafting standards, writing technical documents, translating professional manuals, textbooks, journals, and publications. GB/T 11032-2020 Metal-
Edwiin
10/21/2025
Comprehensive Analysis of Global Transformer Standards
Comprehensive Analysis of Global Transformer Standards
Comparison of Domestic and International Transformer StandardsAs a core component of power systems, the performance and safety of transformers directly affect grid operation quality. The IEC 60076 series standards established by the International Electrotechnical Commission (IEC) correspond multidimensionally with China’s GB/T 1094 series standards in technical specifications. For example, regarding insulation levels, IEC specifies that power frequency withstand voltage for transformers rated at
Noah
10/18/2025
Vacuum Circuit Breaker Loop Resistance Standards
Vacuum Circuit Breaker Loop Resistance Standards
Standard for Loop Resistance of Vacuum Circuit BreakersThe standard for loop resistance of vacuum circuit breakers specifies the required limits for the resistance value in the main current path. During operation, the magnitude of loop resistance directly affects the safety, reliability, and thermal performance of the equipment, making this standard critically important.Below is a detailed overview of the loop resistance standard for vacuum circuit breakers.1. Significance of Loop ResistanceLoop
Noah
10/17/2025
Key Differences: IEEE vs IEC Vacuum Circuit Breakers
Key Differences: IEEE vs IEC Vacuum Circuit Breakers
Differences Between Vacuum Circuit Breakers Complying with IEEE C37.04 and IEC/GB StandardsVacuum circuit breakers designed to meet the North American IEEE C37.04 standard exhibit several key design and functional differences compared to those conforming to IEC/GB standards. These differences primarily stem from safety, serviceability, and system integration requirements in North American switchgear practices.1. Trip-Free Mechanism (Anti-Pumping Function)The "trip-free" mechanism—functionally eq
Noah
10/17/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.