MMF Method of Voltage Regulation

05/10/2025

The MMF Method, also referred to as the Ampere - Turn Method, operates on a principle distinct from the synchronous impedance method. While the synchronous impedance method relies on substituting the impact of armature reaction with an imaginary reactance, the MMF Method focuses on the Magnetomotive Force. Specifically, in the MMF Method, the effect of the armature leakage reactance is replaced by an equivalent additional armature reaction MMF. This allows for the combination of this equivalent MMF with the actual armature reaction MMF, facilitating a different approach to analyzing the electrical machine's behavior.

To calculate the voltage regulation using the MMF Method, the following pieces of information are essential:

  • The resistance of the stator winding per phase.
  • The open - circuit characteristics measured at synchronous speed.
  • The short - circuit characteristics.

Steps to Draw the Phasor Diagram of the MMF Method

The phasor diagram corresponding to a lagging power factor is presented as follows:

image.png

Selecting the reference phasor:

The armature terminal voltage per phase, denoted as V, is chosen as the reference phasor and is represented along the line OA. This serves as the foundation for constructing the phasor diagram, providing a fixed point of reference for the other phasors.

Drawing the armature current phasor:

For the lagging power - factor angle ϕ for which the voltage regulation needs to be calculated, the armature current phasor Ia is drawn such that it lags behind the voltage phasor. This accurately reflects the phase relationship between the current and voltage in a lagging - power - factor electrical system.

Adding the armature resistance drop phasor:

The armature resistance drop phasor Ia Ra is then drawn. Since the voltage drop across a resistor is in phase with the current flowing through it, Ia Ra is drawn in phase with Ia along the line AC. After connecting points O and C, the line OC represents the electromotive force E’. This E’ is an intermediate quantity in the phasor - diagram construction, which helps in further analysis of the electrical machine's characteristics using the MMF method.

image.png

Based on the open - circuit characteristics depicted above, the field current If' corresponding to the voltage E' is computed.

Next, the field current If' is drawn such that it leads the voltage E' by 90 degrees. It is assumed that during a short - circuit condition, the entire excitation is counteracted by the magnetomotive force (MMF) of the armature reaction. This assumption is fundamental in the analysis, as it helps in understanding the interaction between the field and the armature under extreme electrical conditions.

image.png

With reference to the short - circuit characteristics (SSC) presented above, the field current If2 necessary to drive the rated current under short - circuit conditions is determined. This particular field current is what's needed to counterbalance the synchronous reactance drop Ia Xa.

Subsequently, the field current If2 is plotted in a direction that is exactly opposite to the phase of the armature current Ia. This graphical representation is crucial as it visually depicts the opposing magnetic effects between the field and the armature during a short - circuit event.

image.png

Calculating the Resultant Field Current

First, calculate the phasor sum of the field currents If' and If2. This combined value results in the resultant field current If. This If is the field current that would be responsible for generating the voltage E0 when the alternator is operating under no - load conditions.

Determining the Open - Circuit EMF

The open - circuit electromotive force E0, which corresponds to the field current If, can be obtained from the open - circuit characteristics of the alternator. These characteristics provide a relationship between the field current and the generated emf when the alternator has no load connected to it.

Calculating the Alternator's Regulation

The voltage regulation of the alternator can then be determined using the relation presented below. This regulation value is a crucial parameter as it indicates how well the alternator maintains its output voltage under varying load conditions.

image.png

This is all about MMF method of voltage regulation.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!