How does flux affect armature winding?

01/22/2025

How Magnetic Flux Affects Armature Windings

The impact of magnetic flux on armature windings is central to the operation principles of motors and generators. In these devices, changes in magnetic flux induce an electromotive force (EMF) in the armature windings, based on Faraday's law of electromagnetic induction. Below is a detailed explanation of how magnetic flux affects armature windings:

1. Induced Electromotive Force (EMF)

According to Faraday's law of electromagnetic induction, when the magnetic flux through a closed circuit changes, an induced EMF is generated within that circuit. For armature windings, if the magnetic flux varies over time (for example, in a rotating magnetic field), this changing flux induces a voltage in the armature windings. The formula is as follows:

image.png 

  • E is the induced EMF;

  • N N is the number of turns in the winding;

  • Φ Φ is the magnetic flux;

  • Δ t Δt is the change in time.

The negative sign indicates that the direction of the induced EMF opposes the change in flux that caused it, as per Lenz's law.

2. Induced Current

Once an induced EMF is generated in the armature windings and the windings form a closed circuit with an external load, current will flow. This current, caused by the changing magnetic flux, is known as induced current. The magnitude of the induced current depends on the induced EMF, the resistance of the winding, and any other series impedance present.

3. Torque Generation

In motors, when there is current flowing through the armature windings, these currents interact with the magnetic field produced by the stator, resulting in torque. This is because a current-carrying conductor experiences a force in a magnetic field (Ampère's force). This force can be used to drive the shaft rotation, enabling the motor to perform mechanical work.

4. Back EMF

In DC motors, as the armature begins to rotate, it also cuts through magnetic field lines and generates an EMF that opposes the supply voltage; this is called back EMF or counter EMF. The presence of back EMF limits the growth of armature current and helps stabilize the motor speed.

5. Magnetic Saturation and Efficiency

When the magnetic flux density increases to a certain point, the core material may reach magnetic saturation, where further increases in excitation current do not significantly increase the magnetic flux. Magnetic saturation not only affects motor performance but can also lead to additional energy losses, reducing motor efficiency.

In summary, changes in magnetic flux directly influence the induced EMF, current, and subsequently the torque in armature windings, which are fundamental to the proper operation of motors and generators. Proper design and operation of motors and generators must consider these factors to ensure efficient and reliable performance.

Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!