How does the poor power factor affect real power (kw)?

10/18/2024

The impact of a lower power factor on effective power (kilowatts) is mainly reflected in the following aspects:

  1. Reduce the generator's output power: When the generator needs to increase its reactive power output and operate below the rated power factor, it will result in a decrease in the generator's active power output.

  2. Increased Losses in Equipment and Lines: A lower power factor leads to increased losses in equipment and lines, indirectly affecting the transmission and utilization of effective power.

  3. Increased Line Voltage Drop: A lower power factor also leads to a greater voltage drop across lines and transformers, further affecting the efficiency of effective power transmission.

  4. Impact on Power Supply Quality: A lower power factor can lead to a decline in power supply quality, which in turn affects the effective power output of devices that rely on stable voltage and current.

  5. Increased Electricity Expenditure: Due to the additional losses and reduced equipment utilization caused by a low power factor, users may ultimately end up paying more for their electricity, even though these additional costs are not directly reflected in the measurement of effective power (kilowatts). However, they do reflect a decrease in the efficiency of utilizing effective power.

In summary, a lower power factor can affect the effective power (kilowatts) in various ways, including reducing the output capacity of generators and equipment, increasing losses, impacting power supply quality, and increasing operating costs. Therefore, maintaining a high power factor is crucial for improving the efficiency and economic benefits of the power system.


Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.

Difference Between Short Circuit & Overload
Difference Between Short Circuit & Overload
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
08/28/2025
Difference Between Leading and Lagging Power Factor
Difference Between Leading and Lagging Power Factor
Leading and lagging power factors are two key concepts related to the power factor in AC electrical systems. The main difference lies in the phase relationship between current and voltage: in a leading power factor, the current leads the voltage, whereas in a lagging power factor, the current lags behind the voltage. This behavior depends on the nature of the load in the circuit.What is Power Factor?Power factor is a crucial, dimensionless parameter in AC electrical systems, applicable to both s
08/26/2025
Difference Between Electromagnet and Permanent Magnet
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
08/26/2025
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
Interpretation of the “Five Mandatory Surveys” for On - site Investigation in the Operation and Maintenance Specialty
The power outage and work scopes must be clearly inspectedCollaborate with the site survey leader to confirm the equipment to be maintained and the work area involved. Consider requirements such as the use of special vehicles and large machinery, and safe distances from adjacent energized equipment. Verify on-site whether the proposed power outage scope is sufficient to meet the operational needs.On-site safety measures must be clearly inspectedCollaborate with the site survey leader to verify s
Vziman
08/14/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!