• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Resistance Variation with Temperature

Electrical4u
Field: Basic Electrical
0
China

There are some materials mainly metals, such as silver, copper, aluminum, which have plenty of free electrons. Hence this type of materials can conduct current easily that means they are least resistive. But the resistivity of these materials is highly dependable upon their temperature. Generally metals offer more electrical resistance if temperature is increased. On the other hand the resistance offered by a non-metallic substance normally decreases with increase of temperature.

resitance variation.png

If we take a piece of pure metal and make its temperature 0o by means of ice and then increase its temperature from gradually from 0oC to to 100oC by heating it.

During increasing of temperature if we take its resistance at a regular interval, we will find that electrical resistance of the metal piece is gradually increased with increase in temperature. If we plot the resistance variation with temperature i.e. resistance Vs temperature graph, we will get a straight line as shown in the figure below. If this straight line is extended behind the resistance axis, it will cut the temperature axis at some temperature, – t0oC. From the graph it is clear that, at this temperature the electrical resistance of the metal becomes zero. This temperature is referred as inferred zero resistance temperature.
Although zero resistance of any substance cannot be possible practically. Actually rate of resistance variation with temperature is not constant throughout all range of temperature. Actual graph is also shown in the figure below.
Let’s R1 and R2 are the
measured resistances at temperature t1oC and t2oC respectively. Then we can write the equation below,

From the above equation we can calculate resistance of any material at different temperature. Suppose we have measured resistance of a metal at t1oC and this is R1.
If we know the inferred zero resistance temperature i.e. t0 of that particular metal, then we can easily calculate any unknown resistance R2 at any temperature t2oC from the above equation.

The resistance variation with temperature is often used for determining temperature variation of any electrical machine. For example, in temperature rise test of transformer, for determining winding temperature rise, the above equation is applied. This is impossible to access winding inside the an electrical power transformer insulation system for measurement of temperature but we are lucky enough that we have resistance variation with temperature graph in our hand. After measuring electrical resistance of the winding both at the beginning and end of the test run of the transformer, we can easily determine the temperature rise in the transformer winding during test run.

20oC is adopted as standard reference temperature for mentioning resistance. That means if we say resistance of any substance is 20Ω that means this resistance is measured at the temperature of 20oC.

Source: Electrical4u

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Give a tip and encourage the author!
Recommended
Difference Between Electromagnet and Permanent Magnet
Electromagnets vs. Permanent Magnets: Understanding the Key DifferencesElectromagnets and permanent magnets are the two primary types of materials that exhibit magnetic properties. While both generate magnetic fields, they differ fundamentally in how these fields are produced.An electromagnet generates a magnetic field only when an electric current flows through it. In contrast, a permanent magnet inherently produces its own persistent magnetic field once it has been magnetized, without requirin
Edwiin
08/26/2025
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.