• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Free Expert Guides on Power Systems, Circuit Design & Electrical Troubleshooting

Access free engineering resources from IEE Business—covering power design, circuit layout, equipment selection, and troubleshooting. Expert-developed guides help engineers, procurement, and project teams make better decisions. Stay ahead on smart grids, renewables, efficiency, and AI tools. Improve reliability, reduce downtime, and enhance outcomes with real-world solutions. Explore our knowledge hub today.
High-Efficiency Production Process of Special Transformers: Process Flow, Quality Control, and Performance Benchmarking
A certain special transformer manufacturing enterprise, which has been producing special transformers such as split - phase - shifting rectifier transformers, rectifier transformers for electrolysis, and transformers for submerged arc furnaces for more than 20 years. Now, an evaluation is made on the production process flow and its characteristics of the special transformers after the company's transformation.1.Production Process Flow Chart of Special TransformersThe production of special transf
07/28/2025
Consult
Tip
Consult
Tip
Dry-Type vs Oil-Filled 35kV New Energy Transformers: Cost and Performance Comparison
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
07/26/2025
Consult
Tip
Consult
Tip
Transformer Connection Group Explained: Definition, Notation & Measurement Methods
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
07/26/2025
Consult
Tip
Consult
Tip
Working Voltage Explained: Definition, Importance, and Impact on Power Transmission
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
07/26/2025
Consult
Tip
Consult
Tip
Steady State Stability in Power Systems: Definition, Causes, and Improvement Methods
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
07/26/2025
Consult
Tip
Consult
Tip
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
07/26/2025
Consult
Tip
Consult
Tip
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows: Open the 380V power incoming circuit breaker of the corresponding se
07/26/2025
Consult
Tip
Consult
Tip
Understanding Voltage Stability in Power Systems: Large vs. Small Disturbance and Stability Limits
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
07/26/2025
Consult
Tip
Consult
Tip
Design and Implementation of Special Transformer with Automatic Capacity Regulation
1. IntroductionEnergy is essential for societal operation and development. To meet national energy - conservation and emission - reduction policies, improving resource utilization—critical for power enterprises—is necessary. Multi - stage rural grid upgrades drive distribution transformer development. Despite high efficiency, widespread transformers still face significant overall losses due to capacity and usage issues; 70% of medium - and low - voltage grid losses come from
07/26/2025
Consult
Tip
Consult
Tip
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
07/25/2025
Consult
Tip
Consult
Tip
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.