
Հedef Ինքնապահուստ: Արտաքին հոսանքի փոխակերպիչների (CT-ների) վստահելի աշխատանքը և անպայման հեռացումների ներկայացման կանխագուշակումը, osobenno v udalennykh podstantsiyakh s ogranichennym dostupom tekhnicheskogo personala, predstavlyayet znachitelnye operatsionnye riski i vysokie zatraty na obsluzhivaniye. Traditsionnyye periodicheskiye proverki chasto byvayut redkimi, reaktivnymi i mozhet propustit razvivayushchiesya neispravnosti.
Loushakakan ankyunagrutyan nor: Prognostakan ankyunagryutyan & real-time monitoring IoT-n poxos. Ankyunagyutyan veradardzni patkan sensorneri hamar petq e irangavorutyuny, vor tesaketum enq CT-neri bayc karoxi parametrneri, qayli chap patasxan bazmavek data-driven prognosirvel potentsialnaya neispravnosti (izolyatsiya khrakel, yadro sytetyun) ev mets arjeqy tvyalneric, draztami cherkam cherkam tvyalneric u optimizuyut ankyunagri resursner.
Norin ankyunagyutyan nermucacvac sharjery & funktsianer
- Aqrum, sensor-equippeq outdoor CT-ner:
- Hartsarakan temperature sensorner: Tesaketum ambienti hamar toxeri temperaturener. Viparsum abnormali hartsarut, vor petqecheq poluchshikh svyazey, peregruzki (risk sytetyun), kam akta internal degradatsiya. Es astval hayrkarum termal modelirovaniyu u longeviti prognozi.
- Hartsarakan namakyutyan sensorner: Kvetem CT-housing-i mej namakyuti. Erkakan vepativ seal failures or kondensatsiya mijneq insulation degradatsiya (tracking, arcing) u dielectric failures. Astval CT-neri harsh environments.
- Hartsarakan partial discharge (PD) sensorner: Viparsum low-level electrical discharges within the insulation system (voids, contaminants, surface tracking). PD is a primary indicator of impending insulation failure, providing the earliest possible warning for proactive intervention.
- Ruggedized design: Sensorner u internal electronics are hardened to withstand outdoor environmental stresses (UV, extreme temperatures, moisture, EMI) typical of substation environments.
- Wireless, remote data transmission:
- Onboard LoRaWAN/Cellular Modem: Eliminates complex and costly cabling infrastructure. Leverages existing wireless networks:
- LoRaWAN: Ideal for remote sites with lower bandwidth needs. Offers long-range (>10km), low power consumption (enabling battery/solar options), and excellent signal penetration.
- Cellular (LTE-M/NB-IoT): Provides wider coverage where LoRaWAN isn't available. Better suited for sites needing moderate data rates or where cellular infrastructure is reliable. Includes fallback mechanisms for critical alerts.
- Secure communication: Encrypted data transmission (TLS/DTLS) to protect critical infrastructure data.
- Cloud-based AI analytics platform:
- Centralized data aggregation: Receives and securely stores real-time and historical data streams from all deployed CTs.
- AI-driven diagnostic models:
- Insulation health prediction: AI correlates trends in PD activity, temperature, and humidity to predict the rate of insulation degradation and potential failure modes with high confidence. Identifies subtle anomalies missed by threshold alarms.
- Core saturation risk assessment: Analyzes primary current waveform data (harmonics, DC offset detection capability inferred) alongside temperature to model core magnetization characteristics and predict potential saturation risks under specific grid conditions.
- Anomaly detection: Machine learning establishes unique baselines for each CT. Detects subtle deviations across sensor data streams that indicate developing problems, even if no single parameter exceeds an alarm threshold (e.g., subtle temperature rise correlated with specific load patterns).
- Automated alerts & prioritization: Generates actionable alerts categorized by severity. Prioritizes maintenance tasks based on risk assessment and predicted time-to-failure.
- User interface (dashboards & reporting):
- Real-time visualization: Interactive dashboards display health status, sensor readings, trends, and alarms for all CTs across the network on a map or list view.
- Predictive maintenance insights: Provides clear visualizations of remaining useful life (RUL) estimations, probability of failure curves, and recommended actions (e.g., "Schedule inspection within 3 months" or "Diagnostic test recommended").
- Condition reports: Automated generation of detailed health reports for specific CTs or entire fleets.
- Historical analysis: Tools for deep diving into historical data for root cause analysis and performance benchmarking.
Primary use case: Remote substation monitoring & optimization
- Scenario: Substations located in geographically isolated areas (mountains, deserts, rural grids). Technician visits are infrequent, expensive, and logistically complex. Reactive maintenance after failure leads to extended outages.
- Solution benefits:
- Eliminate unnecessary visits: Move from calendar-based to condition-based maintenance. Only dispatch technicians when truly necessary based on AI predictions or specific critical alerts.
- Prevent catastrophic failures: Early detection of developing PD activity, moisture ingress, or thermal anomalies allows intervention before the CT fails catastrophically, avoiding costly collateral damage and prolonged outages.
- Optimize maintenance resources: Focus scarce technician time and budget on high-risk assets identified by predictive analytics, improving overall grid reliability.
- Remote diagnostics: Provides deep insight into CT condition without requiring on-site physical presence for initial diagnosis. Empowers remote experts to guide local crews.
- Extended asset lifespan: Proactive management of conditions degrading the CT (heat, moisture) helps maximize operational life.
Key implementation considerations
- Edge processing: Basic filtering, buffering, and preliminary anomaly detection occur locally on the CT module to minimize unnecessary data transmission and improve response time for critical events.
- Power: CT-powered options for primary connectivity, with battery/solar backup for critical sensing and alerting during primary power loss.
- Cybersecurity: Robust design adhering to industry standards (IEC 62443, NERC CIP) is paramount. Secure boot, encrypted communication, secure device management.
- Scalability: Cloud platform designed to handle data ingestion and processing from thousands of CTs across a large utility network.
- Integration: Open APIs allow integration with existing Asset Management Systems (EAM/CMMS), SCADA systems, and enterprise data lakes for holistic visibility.
- Calibration & validation: Established procedures to validate sensor accuracy and AI model performance against known conditions.
|
Benefit Category
|
Specific Outcome
|
|
Maintenance Cost
|
30-50% reduction through elimination of unnecessary visits & optimized scheduling
|
|
Failure Prevention
|
>90% reduction in catastrophic, unexpected CT failures
|
|
Downtime Reduction
|
>60% reduction in outage duration by enabling proactive intervention
|
|
Asset Lifespan
|
15-25% extension through proactive management of degradation factors
|
|
Operational Safety
|
Reduced need for physical inspections in hazardous locations
|
|
Regulatory Compliance
|
Simplified documentation of CT health status & proactive measures
|