• DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
discuss personally
Model
DS4-252/3150-50
DS4-252/2000-40
DS4-145/2000-40
DS4-126/3150-40
DS4-126/2000-40
DS4-72.5/2000-40
DS4-40.5/4000-50
DS4-40.5/2500-40
DS4-40.5/2000-40
Basic info
Brand ROCKWILL
Model NO. DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
Rated voltage 72.5kV
Rated normal current 2000A
Series DS4
Product Detail

Description:

DS4 series disconnector adopts double column horizontal rotation structure, which is composed of three unipolar and operating mechanism. Each monopole consists of a base, a post insulator, and a conducting part. A rotating pillar insulator is installed at both ends of the base, and the contact arm and contact arm of the main electrical part are respectively fixed on the top of the pillar insulator. The operating mechanism drives one end of the pillar insulator to rotate, and drives the other end of the pillar insulator to reverse rotate 90° through the cross connecting rod, so that the conductive knife can turn on the horizontal plane to realize the isolation switch opening and closing. The opening state forms a horizontal insulation fracture.

Main Features:

  •  The conductive arm is made of rectangular aluminum alloy tube or aluminum alloy plate, high strength, light weight, large heat dissipation area, good anti-corrosion performance.

  •  The contact part of the conductive arm adopts external pressure plate spring structure. The plate spring is made of alloy material with good elasticity, which can keep the contact pressure stable for a long time and overcome the drawbacks of the spring internal pull structure.

Technical parameter

What are the structural characteristics of the disconnector?

Contact System:

  • Description: The contact system is a critical part of the isolator switch, consisting of moving contacts and stationary contacts. The moving contact is typically connected to the operating handle via a transmission mechanism and can move to engage or disengage from the stationary contact under the influence of the operating force.

  • Surface Treatment: To ensure good contact performance, the contact surfaces are often specially treated, such as silver plating. This reduces contact resistance and minimizes heat generation.

  • Shape Design: The shape of the contacts is also important. Common types include knife-blade contacts and finger contacts, which provide a larger contact area to ensure safe and stable current flow.

Insulation Part:

  • Description: The insulation part ensures that there is sufficient insulation between different potential sections of the isolator switch. It is mainly composed of insulators, which are typically made of ceramic, glass, or composite materials.

  • Ceramic Insulators: Ceramic insulators have excellent insulation properties, mechanical strength, and weather resistance, making them suitable for various harsh environmental conditions.

  • Glass Insulators: Glass insulators have good self-cleaning properties, reducing the impact of dust and dirt on insulation performance.

  • Composite Insulators: Composite insulators are lightweight and have excellent pollution flashover resistance, making them advantageous in special application scenarios.

Transmission Mechanism:

  • Description: The transmission mechanism is used to transfer the operating force from the operating handle to the moving contact, enabling the opening and closing actions of the contacts. It can be a manual linkage mechanism or an electric operating mechanism.

  • Manual Linkage Mechanism: This type of mechanism is simple in structure and highly reliable. It converts the rotational motion of the operating handle into linear or rotational motion of the moving contact through a series of linkages and shafts.

  • Electric Operating Mechanism: Suitable for applications requiring remote control or frequent operation, this mechanism uses a motor, reduction gear, and transmission components to achieve automated operation of the isolator switch.

Base and Support:

  • Description: The base and support are the supporting structures of the isolator switch, used to fix the contact system, insulation part, and transmission mechanism. The base is usually made of metal and has sufficient mechanical strength and stability to bear the weight of the isolator switch and various forces generated during operation.

  • Design Considerations: The support is designed based on the installation method and application scenario of the isolator switch. For example, the support structure of indoor isolator switches differs from that of outdoor isolator switches. Outdoor isolator switches require supports that consider factors such as wind resistance, rain protection, and corrosion resistance.

 

Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
Analysis of Transformer Capacity, Load Rate and Number of Units Selection Issues
The safe and economical operation of power transformers is related to the safety, economy, stability, and reliability of the operations of various industries. The limitations of conditions such as the investment economic indicators for its selection, the economic benefits of maintenance and operation, and the adaptability in the new environment (access of distributed power sources, configuration of energy storage, etc.) make it impossible to include comprehensive factors in other aspects.The cap
Leon
07/17/2025
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
Analysis of the Impact of Immersion on the Performance of Low-Voltage Current Transformers
1 IntroductionLow - voltage current transformers for metering, with a through - core type epoxy resin structure, are widely used in distribution transformer areas and for small - to - medium - sized industrial and commercial electricity consumption. As a range expander for electric energy metering, their performance directly relates to electricity consumption safety and the accuracy of users' trade calculations. Studying long - term immersion's impact on these transformers is practically signifi
Felix Spark
07/17/2025
What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
How to Design and Install a Solar PV System?
How to Design and Install a Solar PV System?
Design and Installation of Solar PV SystemsModern society relies on energy for daily needs like industry, heating, transport, and agriculture, mostly met by non-renewable sources (coal, oil, gas). However, these cause environmental harm, are unevenly distributed, and face price volatility due to limited reserves—driving demand for renewable energy.Solar energy, abundant and capable of meeting global needs, stands out. Standalone PV systems (Fig 1) offer energy independence from utilities.
Edwiin
07/17/2025
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
What are the common faults that occur when low-voltage current transformers are combined with other power equipment?
Low-voltage current transformers, as indispensable measurement and protection devices in power systems, often encounter various faults when used in combination with other power equipment due to environmental factors, equipment linkage issues, and improper installation and maintenance. These faults not only affect the normal operation of power equipment but may also endanger personal safety. Therefore, it is necessary to gain an in-depth understanding of fault types, judgment methods, and prevent
Felix Spark
07/17/2025
What are the monitoring methods and future development trends of low-voltage voltage transformers?
What are the monitoring methods and future development trends of low-voltage voltage transformers?
With the continuous advancement of smart grid technology, intelligent monitoring systems are playing an increasingly important role in preventing and addressing faults in voltage transformers. These modern intelligent monitoring systems can collect key parameters from voltage transformers in real time—such as partial discharge levels, temperature, and oil quality—and use data analysis algorithms to assess the health status of the equipment, enabling early fault warnings and precise l
Echo
07/16/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!