
כמבוא, עלינו לדעת על יציבות מצב כוח. זהו באמת יכולת המערכת לחזור לתנאי המצב המתמיד שלה לאחר חשיפה להתפרעות מסוימת. ניתן כעת להתייחס ל-מגנוט סינכרוני כדי להבין את יציבות מערכת הכוח. המגנוט נמצא בסינכרוניזציה עם המערכת השנייה המחוברת אליו. האוטובוס המחובר אליו והמגנוט יישאו את אותו סדר שלב, מתח ותדירות. לכן, ניתן לומר שיציבות מערכת הכוח כאן היא יכולת מערכת הכוח לחזור לתנאי המצב המתמיד שלה מבלי להשפיע על הסינכרוניזציה כאשר היא מופיעה בפני כל התפרעות. יציבות זו מסווגת ל-יציבות רגעית, יציבות דינמית ו-יציבות מצב מתמיד.
יציבות רגעית: מחקר של מערכת כוח המופיעה בפני התפרעות פתאומית גדולה.
יציבות דינמית: מחקר של מערכת כוח המופיעה בפני התפרעות קטנה וממשיכת.
זהו מחקר המתייחס לשינויים קטנים ודרגתיים במצב העבודה של המערכת. המטרה היא לקבוע את הגבול העליון של העמסה במכונה לפני שאבד הסינכרוניזציה. העמסה מגברת לאט.
הכוח הגבוה ביותר שניתן להעביר לסוף המקבל של המערכת מבלי להשפיע על הסינכרוניזציה נקרא גבול יציבות מצב מתמיד.
משוואת הנענדות ידועה על ידי
Pm → כוח מכני
Pe → כוח חשמלי
δ → זווית עומס
H → קבוע אינרציה
ωs → מהירות סינכרונית
קח בחשבון את המערכת הנ"ל (הצורה למעלה) המבצעת העברה ממצב מתמיד של כוח
נניח שהכוח מוגבר בכמות קטנה למשל Δ Pe. כתוצאה מכך, הזווית של הרוטור הופכת ל-
מ- δ0.
p → תדירות תנודה.
משוואת התכונות משמשת לקביעת יציבות המערכת עקב שינויים קטנים.

בלי איבוד יציבות, ההעברה מקסימלית של כוח ניתנת על ידי
נניח, התנאי כאשר המערכת פועלת מתחת לגבול יציבות מצב מתמיד. אז, היא יכולה להשתנות בצורה מתמשכת לאורך זמן רב אם הדמפינג מאוד נמוך. השינויים המשך הם סכנה לבטיחות המערכת. |Vt| צריך להיות קבוע לכל העמסה על ידי התאמת התמריץ. זה כדי לשמור על גבול יציבות מצב מתמיד.
מערכת לעולם לא יכולה לפעול מעל גבול יציבות מצב מתמיד שלה אבל היא יכולה לפעול מעבר לגבול יציבות רגעית.
על ידי הפחתת X (ריאקטנס) או על ידי עליית |E| או על ידי עליית |V|, אפשר לשפר את גבול יציבות מצב מתמיד של המערכת.
שני מערכות לשיפור גבול יציבות הן טעינה מהירה של מתח התמריץ ומתח התמריץ גבוה יותר.
כדי להפחית את X ב-קו תמסורת שיש לו ריאקטנס גבוה, ניתן להשתמש במקביל.
הצהרה: כבוד למקור, מאמרים טובים ראויים לשיתוף, אם יש פגיעה בזכויות יוצרים נא ליצור קשר להסרה.