Working Principle of Surge Arresters

08/15/2025

Surge Arresters: Principles and Applications

A surge arrester is a critical device used to protect structures and electrical equipment from lightning strikes. It rapidly diverts and dissipates lightning current, thereby safeguarding equipment and personnel. The following provides a detailed explanation of its working principles.

1. Basic Construction of Surge Arresters

A surge arrester typically consists of two main components: a gas discharge tube and a metal oxide varistor (MOV).

  • Gas Discharge Tube: This is the core component of the arrester, comprising two electrodes enclosed in a tube filled with a specific gas. When a high voltage from lightning occurs, the gas discharge tube ionizes and breaks down, creating a low-resistance path that channels the lightning current safely to ground.

  • Metal Oxide Varistor (MOV): Serving as a supplementary component, the MOV provides additional overvoltage protection. Under normal conditions, it exhibits high resistance. When the gas discharge tube activates, the MOV rapidly responds to limit residual current and clamp transient overvoltages.

2. Working Principle of Surge Arresters

The operation of a surge arrester can be divided into two stages: the equilibrium stage and the breakdown stage.

  • Equilibrium Stage:
    Under normal operating conditions, in the absence of lightning, both the gas discharge tube and the MOV exhibit very high resistance and are effectively non-conductive. The arrester has no influence on the circuit.

  • Breakdown Stage:
    When lightning strikes a structure or equipment, a high-voltage surge is generated. Once the voltage exceeds the breakdown threshold of the gas discharge tube, it ionizes rapidly, forming a low-impedance path. The lightning current is then safely diverted through the tube to ground, protecting the equipment and personnel.

Simultaneously, the MOV plays a crucial role. It quickly transitions to a low-resistance state in response to the overvoltage, further limiting the surge current and preventing excessive stress on the protected equipment.

3. Applications of Surge Arresters

Surge arresters are widely used in various structures and electrical systems, including residential buildings, commercial facilities, industrial plants, and power networks. Their primary function is to protect against lightning-induced damage, preventing fires, explosions, and equipment failure.

Arresters are categorized into different types—low-voltage, medium-voltage, and high-voltage—based on their application and rated voltage, allowing for appropriate selection according to system requirements.

4. Maintenance and Testing

To ensure reliable performance, surge arresters require regular maintenance and inspection.

  • Maintenance: Periodic visual inspections should be conducted to check for physical damage, corrosion, or contamination. Damaged units must be replaced promptly. The surrounding area should be kept clean and free of obstructions that could impair operation.

  • Testing: The condition of a surge arrester can be assessed by measuring its insulation resistance. Under normal conditions, the resistance is very high (nearly infinite). A significantly reduced resistance indicates potential failure and necessitates replacement.

Additionally, specialized monitoring systems can be used to continuously track the arrester’s status, enabling early detection of issues and timely corrective actions.

Summary

Surge arresters are essential protective devices for structures and electrical equipment against lightning. By combining a gas discharge tube and a metal oxide varistor, they effectively divert and dissipate lightning currents. Their operation involves an equilibrium stage under normal conditions and a breakdown stage during surges, where a low-impedance path is established to safely route current to ground. Widely applied across various installations, surge arresters require regular maintenance and testing to ensure continued reliability and protection.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!