• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Surge Arresters Explained: Principles, Components & Applications

Edwiin
Edwiin
Field: Power switch
China

Surge Arresters: Principles and Applications

A surge arrester is a critical device used to protect structures and electrical equipment from lightning strikes. It rapidly diverts and dissipates lightning current, thereby safeguarding equipment and personnel. The following provides a detailed explanation of its working principles.

1. Basic Construction of Surge Arresters

A surge arrester typically consists of two main components: a gas discharge tube and a metal oxide varistor (MOV).

  • Gas Discharge Tube: This is the core component of the arrester, comprising two electrodes enclosed in a tube filled with a specific gas. When a high voltage from lightning occurs, the gas discharge tube ionizes and breaks down, creating a low-resistance path that channels the lightning current safely to ground.

  • Metal Oxide Varistor (MOV): Serving as a supplementary component, the MOV provides additional overvoltage protection. Under normal conditions, it exhibits high resistance. When the gas discharge tube activates, the MOV rapidly responds to limit residual current and clamp transient overvoltages.

2. Working Principle of Surge Arresters

The operation of a surge arrester can be divided into two stages: the equilibrium stage and the breakdown stage.

  • Equilibrium Stage:
    Under normal operating conditions, in the absence of lightning, both the gas discharge tube and the MOV exhibit very high resistance and are effectively non-conductive. The arrester has no influence on the circuit.

  • Breakdown Stage:
    When lightning strikes a structure or equipment, a high-voltage surge is generated. Once the voltage exceeds the breakdown threshold of the gas discharge tube, it ionizes rapidly, forming a low-impedance path. The lightning current is then safely diverted through the tube to ground, protecting the equipment and personnel.

Simultaneously, the MOV plays a crucial role. It quickly transitions to a low-resistance state in response to the overvoltage, further limiting the surge current and preventing excessive stress on the protected equipment.

3. Applications of Surge Arresters

Surge arresters are widely used in various structures and electrical systems, including residential buildings, commercial facilities, industrial plants, and power networks. Their primary function is to protect against lightning-induced damage, preventing fires, explosions, and equipment failure.

Arresters are categorized into different types—low-voltage, medium-voltage, and high-voltage—based on their application and rated voltage, allowing for appropriate selection according to system requirements.

4. Maintenance and Testing

To ensure reliable performance, surge arresters require regular maintenance and inspection.

  • Maintenance: Periodic visual inspections should be conducted to check for physical damage, corrosion, or contamination. Damaged units must be replaced promptly. The surrounding area should be kept clean and free of obstructions that could impair operation.

  • Testing: The condition of a surge arrester can be assessed by measuring its insulation resistance. Under normal conditions, the resistance is very high (nearly infinite). A significantly reduced resistance indicates potential failure and necessitates replacement.

Additionally, specialized monitoring systems can be used to continuously track the arrester’s status, enabling early detection of issues and timely corrective actions.

Summary

Surge arresters are essential protective devices for structures and electrical equipment against lightning. By combining a gas discharge tube and a metal oxide varistor, they effectively divert and dissipate lightning currents. Their operation involves an equilibrium stage under normal conditions and a breakdown stage during surges, where a low-impedance path is established to safely route current to ground. Widely applied across various installations, surge arresters require regular maintenance and testing to ensure continued reliability and protection.

Give a tip and encourage the author!
Recommended
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
Chinese Grid Technology Reduces Egyptian Power Distribution Losses
On December 2nd, the South Cairo distribution network loss reduction pilot project in Egypt, led and implemented by a Chinese power grid company, officially passed the acceptance inspection by the South Cairo Electricity Distribution Company of Egypt. The comprehensive line loss rate in the pilot area decreased from 17.6% to 6%, achieving an average daily reduction of lost electricity of approximately 15,000 kilowatt-hours. This project is the first overseas distribution network loss reduction p
Baker
12/10/2025
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
Why does a 2-in 4-out 10 kV solid-insulated ring main unit have two incoming feeder cabinets?
A "2-in 4-out 10 kVsolid-insulated ring main unit" refers to a specific type of ring main unit (RMU). The term "2-in 4-out" indicates that this RMU has two incoming feeders and four outgoing feeders.10 kVsolid-insulated ring main unit are equipment used in medium-voltage power distribution systems, primarily installed in substations, distribution stations, and transformer stations to distribute high-voltage power to low-voltage distribution networks. They generally consist of high-voltage incomi
Garca
12/10/2025
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-Voltage Distribution Lines and Power Distribution Requirements for Construction Sites
Low-voltage distribution lines refer to the circuits that, through a distribution transformer, step down the high voltage of 10 kV to the 380/220 V level—i.e., the low-voltage lines running from the substation to the end-use equipment.Low-voltage distribution lines should be considered during the design phase of substation wiring configurations. In factories, for workshops with relatively high power demand, dedicated workshop substations are often installed, where transformers supply power direc
James
12/09/2025
H59/H61 Transformer Failure Analysis and Protection Measures
H59/H61 Transformer Failure Analysis and Protection Measures
1.Causes of Damage to Agricultural H59/H61 Oil-Immersed Distribution Transformers1.1 Insulation DamageRural power supply commonly uses a 380/220V mixed system. Due to the high proportion of single-phase loads, H59/H61 oil-immersed distribution transformers often operate under significant three-phase load imbalance. In many cases, the degree of three-phase load imbalance far exceeds the limits permitted by operational regulations, causing premature aging, deterioration, and eventual failure of th
Felix Spark
12/08/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.