• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Campbell’s Bridge

Edwiin
Edwiin
Field: Power switch
China

Campbell Bridge: Definition and Function
Definition
The Campbell bridge is a specialized electrical bridge designed to measure unknown mutual inductance. Mutual inductance refers to the physical phenomenon where a change in the current flowing through one coil induces an electromotive force (emf) and, consequently, a current in a neighboring coil. This bridge is not only useful for determining mutual inductance values but can also be employed to measure frequency. It does so by adjusting the mutual inductance until a null point is achieved in the bridge circuit.
In electrical engineering, accurately measuring mutual inductance is crucial for understanding the interaction between different coils in circuits, such as in transformers, inductive coupling systems, and various electrical machinery. The Campbell bridge provides a precise and reliable method for these measurements. When used for frequency measurement, the null - point detection principle allows engineers to establish a relationship between the mutual inductance setting and the frequency of the electrical signal under test.
The following figure illustrates the concept of mutual inductance, which forms the foundation for the operation of the Campbell bridge.

Let:

  • M1 represent the unknown mutual inductance

  • L1denote the self - inductance of the secondary of mutual inductance M1

  • M2signify the variable standard mutual inductance

  • L2 be the self - inductance of the secondary of mutual inductance M2

  • R1, R2, R3, R4 stand for non - inductive resistances

Achieving the balanced position of the Campbell bridge necessitates a two - step procedure:

Step 1: Initial Setup and First Balance Condition

The detector is initially connected between points ‘b’ and ‘d’. In this configuration, the circuit functions analogously to a simple self - inductance comme

  • First Balancing Step To bring the bridge to a balanced condition in the first stage, resistors R3 or R4, along with R1 and R2, are adjusted. This adjustment process fine - tunes the electrical parameters of the circuit, ensuring that the electrical potential differences across the relevant parts of the bridge are equalized, much like adjusting the weights on a balance scale to achieve equilibrium.

  • Second Balancing Step In the next phase, the detector is reconnected between points b' and d'. Building on the adjustments made in the first step, the variable standard mutual inductance M2 is then systematically varied. Through this process of varying M2 while maintaining the previously set resistor adjustments, the overall electrical configuration of the bridge is further optimized. Eventually, a balance point is reached, indicating that the bridge has achieved a state of equilibrium where the electrical signals in the circuit are in harmony, and accurate measurements of the unknown mutual inductance M1 can be made.

Give a tip and encourage the author!
Recommended
What are the safety precautions and guidelines for using AC load banks?
What are the safety precautions and guidelines for using AC load banks?
AC load banks are electrical devices used to simulate real-world loads and are widely applied in power systems, communication systems, automation control systems, and other fields. To ensure personal and equipment safety during use, the following safety precautions and guidelines must be observed:Select an appropriate AC load bank: Choose an AC load bank that meets actual requirements, ensuring its capacity, voltage rating, and other parameters satisfy the intended application. Additionally, sel
Echo
11/06/2025
What should be noted when installing a Type K thermocouple?
What should be noted when installing a Type K thermocouple?
Installation precautions for Type K thermocouples are critical to ensuring measurement accuracy and extending service life. Below is an introduction to the installation guidelines for Type K thermocouples, compiled from highly authoritative sources:1.Selection and Inspection Select the appropriate thermocouple type: Choose the right thermocouple based on the temperature range, medium properties, and required accuracy of the measurement environment. Type K thermocouples are suitable for temperatu
James
11/06/2025
 Causes and Preventive Measures of Fire and Explosion in Oil Circuit Breakers
Causes and Preventive Measures of Fire and Explosion in Oil Circuit Breakers
Causes of Fire and Explosion in Oil Circuit Breakers When the oil level in an oil circuit breaker is too low, the oil layer covering the contacts becomes too thin. Under the effect of the electric arc, the oil decomposes and releases flammable gases. These gases accumulate in the space beneath the top cover, mixing with air to form an explosive mixture, which can ignite or explode under high temperature. If the oil level inside the tank is too high, the released gases have limited space to expan
Felix Spark
11/06/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.