• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Energy Meter Testing

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is Energy Meter Testing

We cannot think of life without electricity and when there is electricity consumption there is a need to measure its consumption. Here energy meter comes into picture. In every residence, malls, industry, everywhere energy meters are used to measure the electrical energy consumed. Those consumers which consume large energy needs better technology to manage their energy consumption and need more data to improve their services. Improvement in energy meter technology has increased the value-added features such as remote sensing, LCD display, recording of tempering events, and many more quality monitoring features in it, along with compactness of size. But it has raised the problem of electromagnetic interference which affects the performance of the equipment. So for better reliability, energy meters have to pass through various electromagnetic compatibility (EMC) tests where meters are compared under various normal and abnormal conditions with a laboratory to ensure its accuracy in the field.

Standard Tests for Energy Meters

The performance tests of an energy meter as per IEC standards are divided mainly in three segments which include its mechanical aspects, electrical circuiting, and climatic conditions.

  1. Mechanical component tests.

  2. Climatic conditions test include those limits which influence the performance of the meter externally.

  3. Electrical requirements covered many tests before giving accuracy certificate. Under this segment, energy meter is tested for:

  • Heating effect

  • Proper insulation

  • Supply of voltage

  • Protection to earth fault

  • Electromagnetic compatibility

Electromagnetic Compatibility Test

An electromagnetic compatible test is the most important test which finally ensures the accuracy of the energy meter. This test is fragmented in two parts- one is Emission tests, and the other is Immunity test. The electromagnetic interference problem is very common today.
Those circuits in use today, can emit electromagnetic energy which can affect the performance and reliability of both its inner circuitry and the nearby equipment. EMI can travel through conduction or by radiation. When EMI goes through the wire or through cables, it is called conduction. When it travels through free space, it is called radiation.

Emission Test

In an electronic system, there are many components like switching elements, chokes, circuit layout, rectifying diodes and much more which produce EMI. This test ensures that the energy meter does not affect the performance of the nearby instruments or we can say that it ensures that it does not conduct or radiate EMI beyond a definite limit. There are two types of emission test based on the EMI escapes from the system.
Conducted emission test-
In this test, power lead and cables are checked to measure the EMI escape, and it covers small meter of the frequency range from 150 kHz to 30 MHz.
Radiated emission test-
This test measures the EMI escape through free space, and it covers large meters of the frequency range from 31 MHz to 1000MHz.

Immunity Test

The emission test ensures that meter does not work as the source for EMI for other nearby equipment; similarly immunity test ensures that meter does not work as a receptor and properly function in the presence of EMI. Again, immunity tests are of two types based on radiation and conduction.
Conducted immunity test-
These tests ensure that meter’s functioning do not get disturbed if it is in the blanket of EMI. The electromagnetic interference source either in contact through data, interface lines, power lines, or by contact.
Radiated immunity test-
During this test, meter functioning is monitored and if it gets affected by EMI present in the surrounding area, that fault is recognized and corrected their only. It also is known as the electromagnetic high-frequency field test. Radiations generated by sources like small handheld radio transceivers, transmitters, switches, welders,
fluorescent lights, switches, operating inductive loads etc.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Complete Guide to Circuit Breaker Selection and Setting Calculation
Complete Guide to Circuit Breaker Selection and Setting Calculation
How to Select and Set Circuit Breakers1. Types of Circuit Breakers1.1 Air Circuit Breaker (ACB)Also known as a molded frame or universal circuit breaker, all components are mounted within an insulated metal frame. It is typically open-type, allowing easy replacement of contacts and parts, and can be equipped with various accessories. ACBs are commonly used as main power supply switches. Overcurrent trip units include electromagnetic, electronic, and intelligent types. They provide four-stage pro
Echo
10/28/2025
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
Basic Composition and Function of Circuit Breaker Failure ProtectionCircuit breaker failure protection refers to a protective scheme that operates when the relay protection of a faulty electrical device issues a trip command but the circuit breaker fails to operate. It uses the protection trip signal from the faulty equipment and the current measurement from the failed breaker to determine breaker failure. The protection can then isolate other relevant breakers within the same substation in a sh
Felix Spark
10/28/2025
 Electrical Room Power-On Safety Operation Guide
Electrical Room Power-On Safety Operation Guide
Power Supply Procedure for Low-Voltage Electrical RoomsI. Pre-Power-On Preparations Clean the electrical room thoroughly; remove all debris from switchgear and transformers, and secure all covers. Inspect busbars and cable connections inside transformers and switchgear; ensure all screws are tightened. Live parts must maintain adequate safety clearance from cabinet enclosures and between phases. Test all safety equipment before energizing; use only calibrated measuring instruments. Prepare fire-
Echo
10/28/2025
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
Operation and Fault Handling of High and Low Voltage Power Distribution Systems
1 Key Points in Operation of High and Low Voltage Equipment1.1 High and Low Voltage EquipmentInspect insulating porcelain components for dirt, damage, or signs of electrical discharge. Check the exterior of low-voltage capacitor compensators for excessive temperature or bulging. If both conditions occur simultaneously, suspend installation work immediately. Examine wiring and terminal joints for oil leakage and conduct a thorough inspection for potential issues.Use auditory judgment to assess th
Felix Spark
10/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.