• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Electrical Transmission Tower Earthing

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Earthing Definition


Earthing of electrical transmission towers is defined as a safety measure where each tower is grounded to prevent electrical hazards.


Footing Resistance


Measuring the footing resistance ensures it is below 10 ohms, crucial for tower safety.


Pipe Earthing


In the pipe earthing system, we use a galvanized steel pipe that is 25 mm in diameter and 3 meters long. The pipe is buried vertically in the soil, with its top 1 meter below ground level. If the tower stands on rock, the earthing pipe must be buried in damp soil near the tower.

The tower leg is then connected to the pipe using galvanized steel tape of an appropriate cross-section. The steel tape must be buried in a groove cut into the rock and protected from damage.


In case of pipe earthing system we fill surroundings of the pipe with alternating layers of charcoal and salt, which maintain the surrounding soil of the pipe moist. A details pictorial representation of a pipe earthing is down here below.



4634f5154f05c0486cecb6cc86316e20.jpeg


Counterpoise Earthing


We use 10.97 mm dia galvanized wire for the purpose of counterpoise earthing of electrical transmission tower. Here we connect the galvanized wire with the leg of the tower with the help of galvanized lug and the galvanized lug is fitted with a tower leg with the help of 16 mm dia nut and bolts. The steel wire used for the purpose must be of minimum 25 meters in length. The wire is buried tangentially under the ground of minimum 1 meter depth from the ground level. Here four legs of a tower are connected together with counterpoise earth wire burried below the ground level of 1 meter depth as already been told.


Tower Earthing Lug


The earthing lug extends beyond the tower’s concrete base, ensuring a proper connection.

 

 


Give a tip and encourage the author!
Recommended
MVDC: Future of Efficient, Sustainable Power Grids
MVDC: Future of Efficient, Sustainable Power Grids
The Global Energy Landscape Is Undergoing a Fundamental Transformation toward a "fully electrified society," characterized by widespread carbon-neutral energy and the electrification of industry, transportation, and residential loads.In today’s context of high copper prices, critical mineral conflicts, and congested AC power grids, Medium-Voltage Direct Current (MVDC) systems can overcome many limitations of traditional AC networks. MVDC significantly enhances transmission capacity and efficienc
Edwiin
10/21/2025
Grounding Causes of Cable Lines and the Principles of Incident Handling
Grounding Causes of Cable Lines and the Principles of Incident Handling
Our 220 kV substation is located far from the urban center in a remote area, surrounded primarily by industrial zones such as Lanshan, Hebin, and Tasha Industrial Parks. Major high-load consumers in these zones—including silicon carbide, ferroalloy, and calcium carbide plants—account for approximately 83.87% of our bureau’s total load. The substation operates at voltage levels of 220 kV, 110 kV, and 35 kV.The 35 kV low-voltage side mainly supplies feeders to ferroalloy and silicon carbide plants
Felix Spark
10/21/2025
Overhead Power Lines & Towers: Types, Design & Safety
Overhead Power Lines & Towers: Types, Design & Safety
Besides ultra-high voltage AC substations, what we encounter more frequently are power transmission and distribution lines. Tall towers carry conductors that leap across mountains and seas, stretching into the distance before reaching cities and villages. This is also an interesting topic—today, let's explore transmission lines and their supporting towers.Power Transmission and DistributionFirst, let’s understand how electricity is delivered. The electric power industry primarily consists of fou
Encyclopedia
10/21/2025
Automatic Reclosing Modes: Single, Three-Phase & Composite
Automatic Reclosing Modes: Single, Three-Phase & Composite
General Overview of Automatic Reclosing ModesTypically, automatic reclosing devices are categorized into four modes: single-phase reclosing, three-phase reclosing, composite reclosing, and disabled reclosing. The appropriate mode can be selected based on load requirements and system conditions.1. Single-Phase ReclosingMost 110kV and higher transmission lines employ three-phase single-shot reclosing. According to operational experience, over 70% of short-circuit faults in high-voltage overhead li
Edwiin
10/21/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.