• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Sequence Network

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

Sequence Network

Definition

The sequence impedance network is defined as an equivalent balanced network for a balanced power system under a hypothetical operating condition, where only a single sequence component of voltage and current exists within the system. Symmetrical components play a crucial role in calculating unsymmetrical faults at various nodes of a power system network. Additionally, the positive sequence network is fundamental for load flow studies in power systems. 

Every power system comprises three sequence networks: the positive, negative, and zero sequence networks, each carrying distinct sequence currents. These sequence currents interact in specific ways to model different unbalanced fault scenarios. By calculating these sequence currents and voltages during a fault, the actual currents and voltages in the system can be accurately determined.

Characteristics of Sequence Networks

During the analysis of symmetrical faults, the positive sequence network takes precedence. It is identical to the sequence reactance or impedance network. The negative sequence network shares a similar structure with the positive sequence network; however, its impedance values have opposite signs compared to those of the positive sequence network. In the zero sequence network, the internal part is isolated from the fault point, and the current flow is solely driven by the voltage at the fault location.

Sequence Network for Fault Calculation

A fault in the power system disrupts its balanced operation, plunging it into an unbalanced state. This unbalanced condition can be represented by a combination of a balanced positive sequence set, a symmetrical negative sequence set, and a single - phase zero sequence set. When a fault occurs, it is conceptually equivalent to injecting these three sequence sets into the system simultaneously. The post - fault voltages and currents are then determined by the system's response to each of these component sets.

To analyze the system's response accurately, the three sequence components are indispensable. Assume that each sequence network can be replaced by a Thevenin's equivalent circuit between two key points. Through simplification, each sequence network can be reduced to a single - voltage source in series with a single impedance, as illustrated in the figure below. The sequence network is typically depicted as a box, where one terminal represents the fault point, and the other corresponds to the zero potential of the reference bus N.

image.png

In the positive sequence network, the Thevenin voltage is equivalent to the open - circuit voltage VF at point F. This voltage VF represents the pre - fault voltage of phase a at the fault location F, and is also denoted by Eg. In contrast, the Thevenin voltages in the negative and zero sequence networks are zero. This is because, within a balanced power system, the negative and zero sequence voltages at the fault point are inherently zero.

The current Ia flows from the power system into the fault. Consequently, its symmetrical components Ia0, Ia1, and Ia2 flow away from the fault point F. The symmetrical components of the voltage at the fault point can be expressed as follows:

image.png

Where Z0, Z1 and the Z2 are the total equivalent impedance of the zero, positive and negative sequence network up to the fault point.

Give a tip and encourage the author!
Recommended
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
Encyclopedia
10/09/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(2)
1. On a scorching sunny day, do damaged vulnerable components need to be replaced immediately?Immediate replacement is not recommended. If replacement is necessary, it is advisable to do so in the early morning or late afternoon. You should contact the power station’s operation and maintenance (O&M) personnel promptly, and have professional staff go to the site for replacement.2. To prevent photovoltaic (PV) modules from being hit by heavy objects, can wire mesh protective screens be install
Encyclopedia
09/06/2025
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
How to Maintain a PV Plant? State Grid Answers 8 Common O&M Questions(1)
1. What are the common faults of distributed photovoltaic (PV) power generation systems? What typical problems may occur in various components of the system?Common faults include inverters failing to operate or start due to voltage not reaching the startup set value, and low power generation caused by issues with PV modules or inverters. Typical problems that may occur in system components are burnout of junction boxes and local burnout of PV modules.2. How to handle common faults of distributed
Leon
09/06/2025
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
Short Circuit vs. Overload: Understanding the Differences and How to Protect Your Power System
One of the main differences between a short circuit and an overload is that a short circuit occurs due to a fault between conductors (line-to-line) or between a conductor and earth (line-to-ground), whereas an overload refers to a situation where equipment draws more current than its rated capacity from the power supply.Other key differences between the two are explained in the comparison chart below.The term "overload" typically refers to a condition in a circuit or connected device. A circuit
Edwiin
08/28/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.