• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Free Expert Guides on Power Systems, Circuit Design & Electrical Troubleshooting

Access free engineering resources from IEE Business—covering power design, circuit layout, equipment selection, and troubleshooting. Expert-developed guides help engineers, procurement, and project teams make better decisions. Stay ahead on smart grids, renewables, efficiency, and AI tools. Improve reliability, reduce downtime, and enhance outcomes with real-world solutions. Explore our knowledge hub today.
Main Components of a Transformer – Operating Principle, Faults, and Phenomena of the Gas Relay
Gas accumulation: Free gas is present in the transformer oil. Response: The gas in the liquid rises and accumulates in the Buchholz relay, compressing the transformer oil. As the liquid level drops, the float also descends. The movement of the float drives a switch element (magnetic contact), thereby triggering an alarm signal. However, the float is not affected, because a certain amount of gas can flow through the pipe into the storage chamber.Fault: Due to leakage causing loss of transformer o
11/27/2025
Consult
Tip
Consult
Tip
Relay Protection Types in Substations: A Complete Guide
(1) Generator Protection:Generator protection covers: phase-to-phase short circuits in stator windings, stator ground faults, inter-turn short circuits in stator windings, external short circuits, symmetrical overload, stator overvoltage, single- and double-point grounding in the excitation circuit, and loss of excitation. Tripping actions include shutdown, islanding, limiting fault impact, and alarm signaling.(2) Transformer Protection:Power transformer protection includes: phase-to-phase short
11/05/2025
Consult
Tip
Consult
Tip
Sealing Structure for Oil-Filled SF6 Gas Density Relay Contact Lead Wires
I. CLAIMS A sealing structure for lead wires of contacts in an oil-filled SF6 gas density relay, characterized by comprising a relay housing (1) and a terminal base (2); the terminal base (2) comprising a terminal base housing (3), a terminal base seat (4), and conductive pins (5); the terminal base seat (4) being disposed inside the terminal base housing (3), the terminal base housing (3) being welded onto the surface of the relay housing (1); a central through-hole (6) being provided at the ce
10/27/2025
Consult
Tip
Consult
Tip
SF6 Density Relay Oil Leakage: Causes, Risks & Oil-Free Solutions
1. Introduction SF6 electrical equipment, renowned for its excellent arc-quenching and insulating properties, has been widely applied in power systems. To ensure safe operation, real-time monitoring of SF6 gas density is essential. Currently, mechanical pointer-type density relays are commonly used, providing functions such as alarm, lockout, and on-site display. To enhance vibration resistance, most of these relays are filled internally with silicone oil.However, oil leakage from density relays
10/27/2025
Consult
Tip
Consult
Tip
ZDM Oil-Free SF6 Density Relay: The Permanent Solution to Oil Leakage
The 110kV substation at our plant was constructed and put into operation in February 2005. The 110kV system employs ZF4-126\1250-31.5 type SF6 GIS (Gas-Insulated Switchgear) from Beijing Switchgear Factory, comprising seven bays and 29 SF6 gas compartments, including five circuit breaker compartments. Each circuit breaker compartment is equipped with an SF6 gas density relay. Our plant uses the MTK-1 model oil-filled density relays manufactured by Shanghai Xinyuan Instrument Factory. These relay
10/27/2025
Consult
Tip
Consult
Tip
On-Site Testing of SF6 Gas Density Relays: Relevant Issues
IntroductionSF6 gas is widely used as an insulating and arc-quenching medium in high-voltage and extra-high-voltage electrical equipment due to its excellent insulation, arc-extinguishing properties, and chemical stability. The insulation strength and arc-quenching capability of electrical equipment depend on the density of SF6 gas. A decrease in SF6 gas density can lead to two main hazards: Reduced dielectric strength of the equipment; Decreased interrupting capacity of circuit breakers.Additio
10/27/2025
Consult
Tip
Consult
Tip
SF6 Density Relay Oil Leak: Causes & Solutions
1. BackgroundSF6 electrical equipment has been widely applied in power utilities and industrial enterprises, significantly advancing the development of the power industry. Ensuring the reliable and safe operation of SF6 equipment has become a critical task for power departments.The arc-quenching and insulating medium in SF6 equipment is SF6 gas, which must remain sealed—any leakage compromises the reliability and safety of the equipment. Therefore, monitoring the SF6 gas density is essential.Cur
10/25/2025
Consult
Tip
Consult
Tip
How to Choose a Thermal Relay for Motor Protection?
Thermal Relays for Motor Overload Protection: Principles, Selection, and ApplicationIn motor control systems, fuses are primarily used for short-circuit protection. However, they cannot protect against overheating caused by prolonged overloading, frequent forward-reverse operation, or undervoltage operation. Currently, thermal relays are widely used for motor overload protection. A thermal relay is a protective device that operates based on the thermal effect of electric current, and is essentia
10/22/2025
Consult
Tip
Consult
Tip
How Does Oil Loss Affect SF6 Relay Performance?
1.SF6 Electrical Equipment and the Common Problem of Oil Leakage in SF6 Density RelaysSF6 electrical equipment is now widely used in power utilities and industrial enterprises, significantly advancing the development of the power industry. The arc-quenching and insulating medium in such equipment is sulfur hexafluoride (SF6) gas, which must not leak. Any leakage compromises the reliable and safe operation of the equipment, making it essential to monitor the SF6 gas density. Currently, mechanical
10/21/2025
Consult
Tip
Consult
Tip
What role does a microcomputer integrated protection device play in high-voltage switchgear, and how to select it?
Role and Selection of Microcomputer Integrated Protection Devices in High-Voltage SwitchgearIn recent years, the application of microcomputer integrated protection devices in medium- and high-voltage power distribution system projects has increased significantly. These devices are user-friendly and overcome the drawbacks of traditional relay protection, such as complex wiring, low reliability, and cumbersome setting and debugging procedures. Microcomputer integrated protection devices feature co
09/18/2025
Consult
Tip
Consult
Tip
Send inquiry
+86
Click to upload file

IEE Business will not sell or share your personal information.

Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.