Ferranti Effect in Transmission Lines: What is it?

03/22/2024

What is Ferranti Effect?

The Ferranti effect is a phenomenon that describes the increase in voltage that occurs at the receiving end of a long transmission line relative to the voltage at the sending end. The Ferranti effect is more prevalent when the load is very small, or no load is connected (i.e. an open circuit). The Ferranti effect can be stated as a factor, or as a percent increase.

In general practice we know, that for all electrical systems current flows from the region of higher potential to the region of lower potential, to compensate for the electrical potential difference that exists in the system. In all practical cases, the sending end voltage is higher than the receiving end due to line losses, so current flows from the source or the supply end to the load.

But Sir S.Z. Ferranti, in the year 1890, came up with an astonishing theory about medium transmission line or long-distance transmission lines suggesting that in case of light loading or no-load operation of the transmission system, the receiving end voltage often increases beyond the sending end voltage, leading to a phenomenon known as Ferranti effect in a power system.

Ferranti Effect in Transmission Line

A long transmission line can be considered to compose a considerably high amount of capacitance and inductance distributed across the entire length of the line. Ferranti Effect occurs when current drawn by the distributed capacitance of the line itself is greater than the current associated with the load at the receiving end of the line(during light or no load).

This capacitor charging current leads to a voltage drop across the line inductor of the transmission system which is in phase with the sending end voltages. This voltage drop keeps on increasing additively as we move towards the load end of the line and subsequently, the receiving end voltage tends to get larger than applied voltage leading to the phenomena called Ferranti effect in power system. We illustrate that with the help of a phasor diagram below.

Ferranti Effect In Transmission Line

Thus both the capacitance and inductor effect of transmission line are equally responsible for this particular phenomena to occur, and hence Ferranti effect is negligible in case of a short transmission line as the inductor of such a line is practically considered to be nearing zero. In general for a 300 Km line operating at a frequency of 50 Hz, the no-load receiving end voltage has been found to be 5% higher than the sending end voltage.

Now for the analysis of the Ferranti effect let us consider the phasor diagrams shown above.
Here, Vr is considered to be the reference phasor, represented by OA.

This is represented by the phasor OC.

Now in case of a “long transmission line,” it has been practically observed that the line electrical resistance is negligibly small compared to the line reactance. Hence we can assume the length of the phasor Ic R = 0; we can consider the rise in the voltage is only due to OA – OC = reactive drop in the line.

Now if we consider c0 and L0 are the values of capacitance and inductor per km of the transmission line, where l is the length of the line.

Since, in case of a long transmission line, the capacitance is distributed throughout its length, the average current flowing is,

Thus the rise in voltage due to line inductor is given by,

From the above equation it is absolutely evident, that the rise in voltage at the receiving end is directly proportional to the square of the line length, and hence in case of a long transmission line it keeps increasing with length, and even goes beyond the applied sending end voltage at times, leading to the phenomena called Ferranti effect. If you’d like to be quizzed on the Ferranti effect and related power system topics, check out our power system MCQ (Multiple Choice Questions).

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the difference between a dielectric and an insulator?
What is the difference between a dielectric and an insulator?
Dielectrics and insulators are distinguished primarily by their applications. One of the main differences is that a dielectric can store electrical energy by becoming polarized in an electric field, whereas an insulator resists the flow of electrons to prevent current conduction. Other key differences between them are outlined in the comparison chart below.Definition of DielectricA dielectric material is a type of insulator that contains few or no free electrons. When subjected to an electric fi
08/30/2025
What losses occur during operation of the transformer? How to reduce losses?
What losses occur during operation of the transformer? How to reduce losses?
Transformers experience various types of losses during operation, primarily categorized into two main types: copper losses and iron losses.Copper LossesCopper losses, also known as I²R losses, are caused by the electrical resistance of the transformer windings—typically made of copper. As current flows through the windings, energy is dissipated in the form of heat. These losses are proportional to the square of the load current (I²R), meaning they increase significantly with high
Rockwell
08/29/2025
Cable Fault Detection, Testing, Location and Repair
Cable Fault Detection, Testing, Location and Repair
I. Methods for Cable Testing and Inspection:Insulation Resistance Test: Use an insulation resistance tester to measure the insulation resistance value of the cable. A high insulation resistance value indicates good insulation, while a low value may suggest insulation problems requiring further investigation.Voltage Withstand Test: Apply a high-voltage test using a high-voltage tester to verify whether the cable can withstand high voltage under its rated operating conditions. Under normal circums
08/29/2025
Cable Quality Inspection and Cable Detection & Testing
Cable Quality Inspection and Cable Detection & Testing
Power cable quality inspection and cable testing are conducted to ensure that the cable's quality and performance meet specified requirements, thereby guaranteeing the safe and stable operation of power systems. Below are some common contents of power cable quality inspection and cable testing:Visual Inspection: Check the cable surface for physical defects such as damage, deformation, or scratches to ensure the cable's exterior is intact.Dimensional Measurement: Measure dimensional parameters su
08/29/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!