Circuit Breaker Ratings

Edwiin
05/22/2025

The rating of a circuit breaker is determined by the duties it performs. For complete specifications, standard ratings and various tests for switches and circuit breakers should be consulted. In addition to the normal operation of circuit breakers, they are required to perform the following three major duties under short-circuit conditions:

  • Breaking the faulty section of the system, defined as the breaking capacity of the circuit breaker.
  • Making the circuit under the greatest asymmetrical current in the current wave, referring to the making capacity of the circuit breaker.
  • Carrying fault current safely for a short time while another breaker clears the fault, known as the short-time capacity of the circuit breaker.

In addition to the above ratings, circuit breakers should be specified in terms of:

  • Number of poles
  • Rated voltage
  • Rated current
  • Rated frequency
  • Operating duty
Detailed explanations of these terms:
Rated Voltage
The rated maximum voltage of a circuit breaker is the highest RMS voltage (above nominal voltage) for which it is designed, serving as the upper limit for operation. Rated voltage is expressed in kVrms and uses phase-to-phase voltage for three-phase circuits.
Rated Current
The rated normal current of a circuit breaker is the RMS value of the current it can continuously carry at rated frequency and voltage under specified conditions.
Rated Frequency
The frequency at which a circuit breaker is designed to operate, with the standard frequency being 50 Hz.
Operating Duty
The operating duty of a circuit breaker consists of the prescribed number of unit operations at stated intervals. The operating sequence refers to the opening and closing operations of the circuit breaker contacts.
Breaking Capacity
This term denotes the highest short-circuit current a breaker can interrupt under specified conditions of transient recovery voltage and power-frequency voltage, expressed in KA RMS at contact separation. Breaking capacities are categorized into:
  • Symmetrical breaking capacity
  • Asymmetrical breaking capacity
Making Capacity
When a circuit breaker closes under short-circuit conditions, its making capacity is the ability to withstand electromagnetic forces (directly proportional to the square of the peak making current). The making current is the peak value of the maximum current wave (including the DC component) in the first cycle after the breaker closes the circuit.
Short-Circuit Current Withstand Capacity
This is the RMS value of current a breaker can carry in a fully closed state without damage for a specified time interval under prescribed conditions, typically expressed in KA for 1 second or 4 seconds. These ratings are based on thermal limitations. Low-voltage circuit breakers generally lack such short-circuit current ratings, as they are typically equipped with straight-acting series overload trips.
Edwiin

What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
What is a step voltage regulator?
What is a step voltage regulator?
Hey everyone, I'm Blue — an electrical engineer with over 20 years of experience, currently working at ABB. My career has mainly focused on circuit breaker design, transformer management, and providing power system solutions for various utility companies.Today, someone asked the question: "What is a step voltage regulator?" Let me explain it in simple but professional terms.So, a step voltage regulator is basically a device used in power distribution systems to keep the voltage stable. Think of
Master Electrician
07/11/2025
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!