Latching Relay: What is it? (Circuit Diagram And How it Works)

Electrical4u
03/26/2024

what is a latching relay

What is a Latching Relay?

A latching relay (also known as a bistable, keep, impulse, stay relay, or simply a “latch”) is defined as a two-positional electromechanical switch. It is an electrically actuated switch used to maintain its position without power applied to the coil.

A latching relay is used to control the large flow of current with a smaller current. The coil of the latching relay consumes power only while the relay is switched ON. And its contact remains in position after the switch has been released. See the latching relay circuit diagram below for more details on how this works.

A latching relay is similar to a double-throw toggle switch. In the toggle switch, once the trigger is physically pushed to one position, it will remain in the same position until the trigger is pushed to the opposite position.

Similarly, once set electrically to one position, the latching relay will remain set in that position until it reset to the opposite position.

A latching relay is also known as impulse relay, bi-stable relay, or stay relay.

What is an Impulse Relay?

An impulse relay is a form of latching relay and is often referred to as a bistable relay. It is used to changes the contact states with a pulse.

When impulse relay energizes, it determines the position of the relay and energizes the opposing coil. And the relay will maintain this position even if the power is removed.

When power is reapplied, the contact changes its state and holds this position. And this process is repeated with the ON/OFF power.

This type of relay is most suitable in applications like ON/OFF devices from multiple places with push-button or momentary switch. For example, it is used in a lighting circuit or conveyer to control from different locations.

Latching Relay Circuit Diagram

The latching relay circuit has two pushbuttons. Button-1 (B1) is used to make the circuits, and Button-2 (B2) is used to break the circuit. 

latching relay circuit
Latching Relay Circuit Diagram

When button-1 is pressed, the relay coil will energize. And close the contact A to B and C to D.

Once the relay coil is energized and close the contact A and B, the supply remains to continue after releasing button-1.

The relay coil must be de-energized to interrupt the circuit. So, to de-energize the relay coil, we need to push button-2.

How Does a Latching Relay Work?

The button-1 is the NO (Normally Open) button, and the button-2 is NC (Normally Closed) button. Therefore, initially, button-1 is open, and button-2 is close.

Button-1 is pressed to turn ON the circuit. After pressing button-1, the current will flow through the (+Ve)-B1-A-B-(-Ve).

This will make the relay coil energize. The contacts A is connected to B and C is connected to D.

If you release the push button B1, the relay coil will stay energized, and the current will flow continuously in the circuit. The path of current is (+Ve)-B2-B-A-(-Ve).

To disconnect the circuit, we need to de-energize the relay coil. For that, we need to disconnect the current path.

The push-button B2 is used to turn OFF the circuit. The button B2 is NC. So, when we press this button, it will change its stage to open. Hence, when we press the push button B2, it will break the path and de-energize the circuit.

There are many configurations of relays that can be made with the number of contacts connected with a relay.

How to Make a Latching Relay Circuit

Here, we discuss the step-by-step procedure to make a latching relay circuit.

Step-1 Connect Relay with a push-button and DC supply as shown in the figure below.

step 1 how to make a latching relay circuit

Push-button is Normally an Open (NO) switch. Therefore, initially, the switch is open. When the push button is pressed, the relay gets ON. And when the push button is released, the relay gets OFF.

This is a regular operation of a relay with push-button. In the case of a latching relay, the relay remains in the ON position once the push button is pressed.

Step-2 So, for latching relay operation, the common point of the relay must connect with the source via push button, as shown in the figure below.

step 2 how to make a latching relay circuit

In this condition, when we press the push button, the relay gets ON. After release the push button, the relay contact remains in the same position. 

Here, when we release the push button, the supply to A1 from the push-button is disconnected. But the supply continuously available direly from the DC line.

Therefore, in this condition, when we pressed the push button, the supply continuously ON. And it will never OFF.

Step-3 Therefore, we connect an extra push button, normally closed (NC), with the DC line and relay, as shown in the figure below.

step 3 how to make a latching relay circuit

This push-button is used to turn OFF the supply. So, when we press this push button, it will disconnect the relay from the DC line.

Hence, to turn ON the supply, we use push button-1, and to turn OFF the supply, we use push button-2.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is reactive power measurement?
What is reactive power measurement?
The power which exists in the circuit when the voltage and current are out of phase to each other, such type of power is known as the reactive power. The formula measures the reactive power in the circuitReactive Power Measurement & VarmetersReactive power measurement is critical as it indicates circuit power loss: low reactive power worsens load power factor, increasing system losses. Varmeters (volt-ampere reactive meters) measure reactive power and are categorized by circuit phases:Single
Edwiin
07/17/2025
What is a step voltage regulator?
What is a step voltage regulator?
Hey everyone, I'm Blue — an electrical engineer with over 20 years of experience, currently working at ABB. My career has mainly focused on circuit breaker design, transformer management, and providing power system solutions for various utility companies.Today, someone asked the question: "What is a step voltage regulator?" Let me explain it in simple but professional terms.So, a step voltage regulator is basically a device used in power distribution systems to keep the voltage stable. Think of
Master Electrician
07/11/2025
Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!