• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Inter Turn Fault Protection of Stator Winding of Generator

Electrical4u
Field: Basic Electrical
0
China

What Is Inter Turn Fault Protection

Inter turn stator winding fault can easily be detected by stator differential protection or stator earth fault protection. Hence, it is not very essential to provide special protection scheme for inter turn faults occurred in stator winding. This type of faults is generated if the insulation between conductors (with different potential) in the same slot is punctured. This type of fault rapidly changes to earth fault.
The high
voltage generator contains a large number of conductors per slot in the stator winding hence, in these cases the additional inter turn fault protection of the stator winding may be essential. Moreover in modern practice, inter turn protection is becoming essential for all large generating units.
Several methods can be adopted for providing inter turn protection to the stator winding of generator. Cross differential methods is most common among them. In this scheme the winding for each phase is divided into two parallel paths.

Each of the paths is fitted with identical current transformer. The secondary of these current transformers are connected in cross. The current transformer secondary’s are cross connected because currents at the primary of both CTs are entering unlike the case of differential protection of transformer where current entering from one side and leaving to other side of the transformer.
The
differential relay along with series stabilizing resistor are connected across the CT secondary loop as shown in the figure. If any inter turn fault occurs in any path of the stator winding, there will be an unbalanced in the CT secondary circuits thereby actuates 87 differential relay. Cross differential protection scheme should be applied in each of the phases individually as shown.
stator inter turn protection

An alternative scheme of inter turn fault protection of stator winding of generator is also used. This scheme provides complete protection against internal faults of all synchronous machines irrespective of the type of the winding employed or the kind of methods for connection. An internal fault in the stator winding generates second harmonic current, included in the field winding and exciter circuits of the generator. This current can be applied to a sensitive polarized relay via a CT and filter circuit.

The scheme operation is controlled by a direction of negative phase sequence relay, in order to prevent operation during external unbalanced faults or asymmetrical load conditions. Should there be any asymmetry external to the generator unit zone, the negative phase sequence relay prevents a complete shutdown, only allowing the main circuit breaker to be tripped, to prevent the rotor damage due to the over rating effects of second harmonic currents.

stator inter turn protection
stator inter turn protection

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
Transmission Line
In transmission lines, a "π" connection involves breaking the original line from Substation A to Substation B and inserting Substation C, forming a "π" configuration. After the "π" connection, the original single line is divided into two independent transmission lines. Following the "π" connection, Substations B and C may both be powered by Substation A (in this case, Substation C receives power via a feeder from Substation B's busbar, or possibly from another voltage point within Substation B);
Encyclopedia
09/04/2025
What are the principles of forced re-energization of transmission lines?
Principles of Forced Re-energization of Transmission LinesRegulations for Forced Re-energization of Transmission Lines Correctly select the forced re-energization end of the line. If necessary, change the connection configuration before forced re-energization, taking into account the reduction of short-circuit capacity and its impact on grid stability. There must be a transformer with its neutral point directly grounded on the busbar at the forced re-energization end. Pay attention to the impact
Edwiin
09/04/2025
Analysis of Accident Handling in Transmission Lines
Analysis of Transmission Line Fault HandlingAs a fundamental component of the power grid, transmission lines are widely distributed and numerous, often exposed to diverse geographical and climatic conditions, making them highly susceptible to faults. Common causes include overvoltage, pollution flashover, insulation damage, tree encroachment, and external damage. Line tripping is one of the most frequent faults in power plant and substation operations, with fault types including single-phase-to-
Leon
09/04/2025
The difference between transmission and distribution lines
Transmission lines and distribution lines are both used to carry electrical power from one location to another. However, they differ significantly in key aspects such as primary function, voltage levels, phase configuration, and conductor placement. These differences are essential for understanding their distinct roles in the power system.The Difference Between Transmission and Distribution Line is given below in the tabulated form.Electricity generation is a critical component of the power syst
Edwiin
09/04/2025
Related Products
  • KW-1 Series simulation rain - shower tester
  • IPXX Series Ingress Protection professional testing tool
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.