• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Oscillator Kristal: Circuit, Ma'ana'i da Tsarin Haɗa

Electrical4u
فیلڈ: Karkashin Kuliya da Dukkana
0
China

Wani Crystal Oscillator

Crystal oscillators suna da aiki na masu amfani da yadda ake amfani da inverse piezoelectric effect inda alternating voltage da ake koyar da shi a kan crystal surfaces zai iya sa shi zuwa natural frequency. Wadannan vibrations sun zama oscillations.

Wadannan oscillators suna da Quartz crystal, haka mafi sabon abubuwa kamar Rochelle salt da Tourmaline sun fi sani da piezoelectric effect saboda quartz ita ce mai karfi, mai karin kayan ado da ma'ana a cikin wadannan.

A cikin crystal oscillators, an gane crystal ta da suka koyar da biyu metallic plates kamar yadda aka nuna a Figure 1a, wanda electrical equivalent tana nufin a Figure 1b. A cikin wadannan, crystal ta yi nasara a series RLC circuit, wanda ana fara daga

  1. A low-valued resistor RS

  2. A large-valued inductor LS

  3. A small-valued capacitor CS

Wadannan zai kasance parallel da capacitance of its electrodes Cp.

crystal oscillator
Saboda presence of Cp, crystal zai resonate a biyu different frequencies kamar yadda ya bayyana,

  1. Series Resonant Frequency, fs wanda zai faru idan series capacitance CS zai resonate with the series inductance LS. A wannan lokacin, crystal impedance zai zama least and hence feedback zai zama largest. Mathematical expression for the same is given as

  2. Parallel Resonant frequency, fp wanda zai faru idan reactance of the LSCS leg equals the reactance of the parallel capacitor Cp i.e. LS and CS zai resonate with Cp. A wannan lokacin, crystal impedance zai zama highest and thus feedback zai zama least. Mathematically it can be given as

Capacitor behaviour zai zama capacitive both below fS and above fp. Amma for the frequencies which lie in-between fS and above fp, crystal’s behavior zai zama inductive. Further when the frequency becomes equal to parallel resonant frequency fp, then the interaction between LS and Cp would form a parallel tuned LC tank circuit. Hence, a crystal can be viewed as a combination of series and parallel tuned resonance circuits due to which one needs to tune the circuit for any one among these two. Moreover it is to be noted that fp will be higher than fs and the closeness between the two will be decided by the cut and the dimensions of the crystal in-use.

Crystal oscillators can be designed by connecting the crystal into the circuit such that it offers low impedance when operated in series-resonant mode (Figure 2a) and high impedance when operated in anti-resonant or parallel resonant mode (Figure 2b).
crystal oscillator
In the circuits shown, the resistors R1 and R2 form the voltage divider network while the emitter resistor RE stabilizes the circuit. Further, CE (Figure 2a) acts as an AC bypass capacitor while the coupling capacitor CC (Figure 2a) is used to block DC signal propagation between the collector and the base terminals.

Next, the capacitors C1 and C2 form the capacitive voltage divider network in the case of Figure 2b. In addition, there is also a Radio Frequency Coil (RFC) in the circuits (both in Figure 2a and 2b) which offers dual advantage as it provides even the DC bias as well as frees the circuit-output from being affected by the AC signal on the power lines.

On supplying the power to the oscillator, the amplitude of the oscillations in the circuit increases until a point is reached wherein the nonlinearities in the amplifier reduce the loop gain to unity.

Next, on reaching the steady state, the crystal in the feedback loop highly influences the frequency of the operating circuit. Further, here, the frequency will self-adjust so as to facilitate the crystal to present a reactance to the circuit such that the Barkhausen phase requirement is fulfilled.

In general, the frequency of the crystal oscillators will be fixed to be the crystal’s fundamental or characteristic frequency which will be decided by the physical size and shape of the crystal.

However, if the crystal is non-parallel or of non-uniform thickness, then it might resonate at multiple frequencies, resulting in harmonics.

Further, the crystal oscillators can be tuned to either even or odd harmonic of the fundamental frequency, which are called Harmonic and Overtone Oscillators, respectively.

An example of this is the case where the parallel resonance frequency of the crystal is decreased or increased by adding a capacitor or an inductor across the crystal, respectively.

The typical operating range of the crystal oscillators is from 40 KHz to 100 MHz wherein the low frequency oscillators are designed using OpAmps while the high frequency-ones are designed using the transistors (BJTs or FETs).

The frequency of oscillations generated by the circuit is decided by the series resonant frequency of the crystal and will be unaffected by the variations in supply voltage, transistor parameters, etc. As a result, crystal oscillators exhibit a high Q-factor with excellent frequency stability, making them most suitable for high-frequency applications.

However, care should be taken so as to drive the crystal with optimum power only. This is because, if too much power is delivered to the crystal, then the parasitic resonances might be excited in the crystal which leads to the unstable resonant frequency.

Further, even its output waveform might be distorted due to the degradation in its phase noise performance. Moreover, it can even result in the destruction of the device (crystal) due to overheating.

Crystal oscillators are compact in size and are of low cost due to which they are extensively used in electronic warfare systems, communication systems, guidance systems, microprocessors, microcontrollers, space tracking systems, measuring instruments, medical devices, computers, digital systems, instrumentation, phase-locked loop systems, modems, sensors, disk drives, marine systems, telecommunications, engine control systems, clocks, Global Positioning Systems (GPS), cable television systems, video cameras, toys, video games, radio systems, cellular phones, timers, etc.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Ba da kyau kuma kara mai rubutu!

Tambayar Da Yawanci

Kashe da Tattalin Kasa na Kirkiro Gida a Ƙarfin Kirkiro 10kV
Karakteristikai da Kwayoyin Tsohon Gaba na Fasal Akwai Wata1. Karakteristikai na Fasal Akwai WataSignaolin Alarami na Wasu:Bello na alarami ya kara, kuma lampan na bayani "Fasal Akwai Wata a [X] kV Bus Section [Y]" ta kafa. A cikin sistemai da ke amfani da Petersen coil (coil na paka wata) don kare gaba na neutral point, lampan na "Petersen Coil Operated" kuma ta kafa.Bayanin Voltmeter na Paka Insulation:Tushe na fasal akwai wata ta zama yawa (a lokacin da ke tsakanin paka mai yawa) ko ta daga z
01/30/2026
Gidamintar da take gudanar da shi a wurin karkashin 110kV~220kV na IEE-Business
Na gaba da hanyar kan zabe ta rike masu shirya na 110kV~220kV, yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suka dace da muhimmanci, kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti suke musamman. Kuma yana bukata cewa zabe ta rike masu shirya na tsakiyar karamin sauti ba suka fi yawa da tare da uku da zabe ta rike masu shirya na tsakiyar karamin sauti.Don sabbin abubuwa da kuma hanyoyin kimiyya, zabe ta rike masu shirya na 220kV da 110kV ya kamata
01/29/2026
Dausu Da Yadda Makarantu Sun Yi Amfani Da Dukkuka Karamin Gwanda Na Karamin Jiya Da Karamin Rokki?
Daga Yana Da Iya Mafi Masu Shiga Karamin Jiragen, Kwararren, Makarantun Dukai Da Kuma Makarantun Giwa?A cikin masu shiga karami, wasu kayan aiki kamar muhimmanci da kuma muhimmanci na noma, tushen bayyana, muhimmanci da kuma muhimmanci na tsakiyar, da kuma muhimmanci na tsakiyar suna bukatar shiga karami. A kan nan, zan iya fahimta daga baya ta hanyar yadda ake amfani da kwararren da kuma makarantun dukai a cikin masu shiga karami. Ba saboda haka, wannan kwararre ya taka rawa masu dalilai da kum
01/29/2026
HECI GCB for Generators – Fast SF₆ Circuit Breaker HECI GCB for Generators – Karamin Kirki na SF₆
1. Tasharrafu da Funtuka1.1 Ruhunin Kirkiyar Kirkiyar KuliyaKirkiyar Kirkiyar Kuliya (GCB) shi ne tushen kawo kawo da ake iya gudanar da ita wanda yake kan bayan kuliya da kirkiyars gudanar da abubuwan rayuwa. An fi sani da shi a matsayin muhimmanci na kuliya da grid ta masara. Funtukan da suka biyo sun hada da gudanar da abubuwan dole na kuliya da kuma gudanar da abubuwan rayuwar da aka yi a lokacin da ake haɗa da kuliya da kuma grid ta masara. Addinin da GCB ya yi ba shi da cikakken farko da k
01/06/2026
Aika tambaya
+86
Dauke kake saita fayil
Kwamfuta
Samun IEE Business Application
Yi amfani da IEE-Business app don samun abubuwan aikin, samun halayyin, haɗi da malamai, kuma kai tsauraran takaiddun kasoshin duka lokaci, duka wurin—dole bai karfin takamaltar hulɗin ku na alintakargida da kasuwanci.